Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Nanoporous Silica of Some Egyptian Diatom Frustules as a Promising Natural Material

Author(s): Atef M. Abo-Shady, Abdelfattah A. Zalat, Emad A. Al-Ashkar and Mohamed M. Ghobara*

Volume 9, Issue 3, 2019

Page: [414 - 425] Pages: 12

DOI: 10.2174/2210681208666180321113834

Price: $65

Abstract

Background: Diatoms are a large unique group of unicellular microalgae with a significant ornamented cell wall made of hydrated silica, which is called "frustule". Their ornamented siliceous shells are usually composed of multi-layer structures with multi-scale porosity, which can be used as a promising source to obtain hierarchical macro and mesoporous silica microparticles. The present study is one step forward through a long road seeking for green nanofabrication techniques of such porous materials that will be economically more efficient with large design flexibility.

Materials and Methods: For seeking different porosity scales, architectures, and distribution patterns, a total of 237 diatom species and varieties belonging to 68 genera were identified from 59 samples, which were collected from different Egyptian habitats and environments. Of these eight species were selected to study their frustules' ultra-structures in details, including; Aulacoseira granulata (Ehrenberg) Simonsen, Actinocyclus octonarius Ehrenberg, Cyclotella meneghiniana Kützing, Pleurosira laevis (Ehrenberg) Compére, Synedra ulna (Nitzsch) Ehrenberg, Achnanthes brevipes Agardh, Nitzschia amphibia Grunow and Nitzschia palea (Kützing) W. Smith. Nitzschia palea (Kützing) W. Smith was also isolated and cultivated.

Results: The ultrastructure and porosity of all studied species had been revealed. The porosity scale was ranged from 5 to 500 nm in diameter.

Conclusion: The obtained results showed the potential of diatom frustules in nanotechnology as a source of natural silica microparticles with macro and mesoporous structures could be of a large interest for applications including ultra, micro and nanofiltration, drug delivery systems, optoelectronics, or other novel nanotechnology applications.

Keywords: Diatom ultrastructure, diatom nanotechnology, mesoporosity, macroporosity, biogenic silica, drug delivery system.

Graphical Abstract

[1]
Nelson, D.M.; Tréguer, P.; Brzezinski, M.A.; Leynaert, A.; Quéguiner, B. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem. Cycles, 1995, 9, 359.
[2]
Mann, D.G. The species concept in diatoms. Phycologia, 1999, 38(6), 437-495.
[3]
Raven, J.A.; White, A.M. The evolution of silicification in diatoms: Inesplcable sinking and sinking as escape? New Phytol., 2004, 162, 45-61.
[4]
Round, F.E.; Crawford, R.M.; Mann, D.G. The diatoms: Biology and morphology of the genera; Cambridge University Press: Cambridge, 1990.
[5]
Gordon, R.; Losic, D.; Tiffany, M.A.; Nagy, S.S.; Sterrenburg, F.A.S. The glass menagerie: Diatoms for novel applications in nanotechnology. Trends Biotechnol., 2009, 27, 116-127.
[6]
Luís, A.T.; Hlúbiková, D.; Vaché, V.; Choquet, P.; Hoffmann, L.; Ector, L. Atomic force microscopy (AFM) application to diatom study: Review and perspectives. J. Appl. Phycol., 2017, 29(6), 2989-3001.
[7]
Garcia, A.P. Hierarchical and size dependent mechanical properties of silica and silicon nanostructures inspired by diatom algae. M.Sc. Thesis, Massachusetts institute of technology: Cambridge, Massachusetts, USA, 2010.
[8]
De Tommasi, E. Light manipulation by single cells: The case of diatoms. J. Spectrosc., 2016, 2016, 1-14.
[9]
Ghobara, M.M.; Vinayak, V.; Smith, D.R.; Schoefs, B.; Gebeshuber, I.C.; Gordon, R. Diatom frustules as photo-regulators of diatom photobiology. In: National symposium on horizons of light in molecules, materials and daily life Gour Central University, Sagar, India, December 18-19, 2015
[10]
Losic, D.; Rosengarten, G.; Mitchell, J.G.; Voelcker, N.H. Pore architecture of diatom frustules: potential nanostructured membranes for molecular and particle separations. J. Nanosci. Nanotechnol., 2006, 6, 982-989.
[11]
Davis, M.E. Ordered porous materials for emerging applications. Nature, 2002, 417(6891), 813-821.
[12]
Yao, X.; Zhou, S.; Zhou, H.; Fan, T. Pollen-structured hierarchically meso/macroporous silica spheres with supported gold nanoparticles for high-performance catalytic CO oxidation. Mater. Res. Bull., 2017, 92, 129-137.
[13]
Slowing, I.; Trewyn, B.; Giri, S.; Lin, V. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater., 2007, 17(8), 1225-1236.
[14]
Giraldo, L.F.; López, B.L.; Pérez, L.; Urrego, S.; Sierra, L.; Mesa, M. Mesoporous silica applications. Macromol. Symp., 2007, 258(1), 129-141.
[15]
Li, Z.; Barnes, J.C.; Bosoy, A.; Stoddart, J.F.; Zink, J.I. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev., 2012, 41(7), 2590.
[16]
Tsai, C.; Tam, S.; Lu, Y.; Brinker, C. Dual-layer asymmetric microporous silica membranes. J. Membr. Sci., 2000, 169(2), 255-268.
[17]
Willis, L.; Page, K.M.; Broomhead, D.S.; Cox, E.J. Discrete free-boundary reaction-diffusion model of diatom pore occlusions. Plant Ecol. Evol., 2010, 143(3), 297-306.
[18]
Jeffryes, C.; Campbell, J.; Li, H.; Jiao, J.; Rorrer, G.L. The potential of diatom nanobiotechnology for applications in solar cells, batteries and electroluminescent devices. Energy Environ. Sci., 2011, 4(10), 3930-3941.
[19]
Mishler, J.; Blake, P.; Alverson, A.J.; Roper, D.K.; Herzog, J.B. Diatom frustule photonic crystal geometric and optical characterization. Proc. SPIE, 2014, 1971, 19710P.
[20]
Crawford, S.A.; Higgins, M.J.; Mulvaney, P.; Wetherbee, R. Nanostructure of the diatom frustuleas revealed by atomic force and scanning electron microscopy. J. Phycol., 2001, 37, 543-554.
[21]
Gordon, R.; Parkinson, J. Potential roles for diatomists in nanotechnology. J. Nanosci. Nanotechnol., 2005, 5(1), 51-56.
[22]
Losic, D. Diatom nanotechnology: Progress and emerging applications; Royal Society of Chemistry: Cambridge, UK, 2017.
[23]
Townley, H.E.; Parker, A.R.; White-Cooper, H. Exploitation of diatom frustules for nanotechnology: Tethering active biomolecules. Adv. Funct. Mater., 2008, 18, 369-374.
[24]
Gordon, R. Diatoms and nanotechnology: Early history and imagined future as seen through patents.In: The Diatoms: Applications for the Environmental and Earth Sciences; Smol, J.P.; Stoermer, E.F., Eds.; Cambridge University Press: Cambridge, UK, 2014.
[25]
Goodsell, D.S. Bionanotechnology, lessons from nature; Wiley-Liss: New York, 2004.
[26]
Guo, P.X. A special issue on bionanotechnology. preface. J. Nanosci. Nanotechnol., 2005, 5, i-iii.
[27]
Gazit, E. Plenty of room for biology at the bottom: An introduction to bionanotechnology; World Scientific: Singapore, 2007.
[28]
Reisner, D.E. Bionanotechnology: Global prospects; CRC Press: Boca Raton, FL, 2008.
[29]
Dickerson, M.B.; Sandhage, K.H.; Naik, R.R. Proteinand peptide-directed syntheses of inorganic materials. Chem. Rev., 2008, 108, 4935-4978.
[30]
Gebeshuber, I.C.; Stachelberger, H.; Ganji, B.A.; Fu, D.; Yunas, J.; Majlis, B. Exploring the innovational potential of biomimetics for novel 3D MEMS. Adv. Mat. Res., 2009, 74, 265-268.
[31]
Dolatabadi, J.E.N.; de la Guardia, M. Applications of diatoms and silica nanotechnology in biosensing, drug and gene delivery, and formation of complex metal nanostructures, TrAC. Trends Anal. Chem., 2011, 30, 1538-1548.
[32]
Fuhrmann, T.; Landwehr, S.; El Rharbi-Kucki, M.; Sumper, M. Diatoms as living photonic crystals. Appl. Phys. B, 2004, 78, 257-260.
[33]
Zalat, A.A. Distribution and origin of diatoms in the bottom sediments of the Suez canal lakes and adjacent areas, Egypt. Diatom Res., 2002, 17(1), 243-266.
[34]
Taylor, J.C.; De la Rey, P.A.; Van Rensburg, L. Recommendations for the collection, preparation and enumeration of diatoms from riverine habitats for water quality monitoring in South Africa. Afr. J. Aquat. Sci., 2005, 30(1), 65-75.
[35]
Wang, Y.; Cai, J.; Jiang, Y.; Jiang, X.; Zhang, D. Preparation of biosilica structures from frustules of diatoms and their applications: current state and perspectives. Appl. Microbiol. Biotechnol., 2012, 97(2), 453-460.
[36]
Hustedt, F. Die diatomeenflora des fluss-systems der weser im gebiet der hansestadt bremen abhandlungen des naturwissenschaftlichen Verein zu Bremen; Koeltz Scientific Books: Koenigstein, Germany, 1976, Vol. 34, pp. 181-440.
[37]
Hustedt, F. Die Kieselalgen Deutschlands, Österreichs und der Schweiz. In: Kryptogamenflora von Deutschland, Oesterreich und der Schweiz, Akad Ver gesel Leipzig. Rabenhorst, L. (ed.), Akademische Verl.-Ges., Athenaion, 1966.
[38]
Ehrlich, A. Quaternary diatoms of the Hula Basin (Northern Israel). Bull. Geol. Surv. Israel, 1973, 58, 1-39.
[39]
Ehrlich, A. The diatoms from the surface sediments of the bardawil lagoon (Northern Sinai)-Paleoecological significance. Nova Hedwigia, 1975, 53, 253-277.
[40]
Simonsen, R. The diatom system: Ideas on phylogeny. Bacillaria, 1979, 2, 9-72.
[41]
Krammer, K.; Lange-Bertalot, H. Bacillariophyceae. 1 Teil: Naviculaceae.In: Süsswasser-flora von Mitteleuropa; Ettl, H.; Gerloff, J.; Heynig, H.; Mollenhauer, D., Eds.; Gustav Fischer Verlag: New York, 1986, Vol. 2, pp. 1-876.
[42]
Krammer, K.; Lange-Bertalot, H. Bacillariophyceae. 2 Teil: Bacillariaceae, Epithemiaceae, Surirellaceae In.In: Süsswasser-flora von Mitteleuropa; Ettl, H.; Gerloff, J.; Heynig, H.; Mollenhauer, D., Eds.; Gustav Fischer Verlag: New York, 1988, Vol. 2, pp. 1-596.
[43]
Krammer, K.; Lange-Bertalot, H. Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae.In: Süsswasser-flora von Mitteleuropa; Ettl, H.; Gerloff, J.; Heynig, H.; Mollenhauer, D., Eds.; Gustav Fischer Verlag: Jena, 1991, Vol. 2, pp. 1-576. a
[44]
Krammer, K.; Lange-Bertalot, H. Bacillariophyceae. 4 Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema.In: Süsswasser-flora von Mitteleuropa; Ettl, H.; Gerloff, J.; Heynig, H.; Mollenhauer, D., Eds.; Gustav Fischer Verlag: Jena, 1991, Vol. 2, pp. 1-437. b
[45]
Gasse, F. East African diatoms. Taxonomy, ecological distribution. Bibl. Diatomol, 1986, 2, 1-201.
[46]
Foged, N. Diatoms in Egypt. Nova Hedw, 1980, 33, 629-707.
[47]
Foged, N. Some diatoms from Siberia, especially from Lake Baikal. Diatom Res., 1993, 8(2), 231-279.
[48]
Andersen, R.A. Algal culturing techniques; Elsevier: Amsterdam, 2005.
[49]
Pickle, J. Analyzing Digital Images Installation Packages for Windows and OS/X 2015. Available from: http://www.umassk12.net/adi/
[50]
Willis, L.; Cox, E.J.; Duke, T. A simple probabilistic model of submicroscopic diatom morphogenesis. J. R. Soc. Interface, 2013, 10(20130067), 1-9.
[51]
Yang, W.; Lopezc, P.J.; Rosengarten, G. Diatoms: Self assembled silica nanostructures, and templates for bio/chemical sensors and biomimetic membranes. Analyst, 2011, 136, 42-53.
[52]
Bhatta, H.; Enderlein, J.; Rosengarten, G. Fluorescence correlation spectroscopy to study diffusion through diatom nanopores. J. Nanosci. Nanotechnol., 2009, 9(11), 6760-6766.
[53]
Kuiper, S. Development and application of microsieves. Ph.D. Thesis. University of Twente, Enschede, Netherlands, 2000
[54]
Nogue, M.G. Inorganic and polymeric microsieves: Strategies to reduce fouling. Ph.D. Thesis. University of Twente, Enschede, Netherlands, 2005.
[55]
Gironès, M.; Akbarsyah, I.J.; Nijdam, W.; van Rijn, C.J.M.; Jansen, H.V.; Lammertink, R.G.H.; Wessling, M. Polymeric microsieves produced by phase separation micromolding. J. Membrane. Sci., 2006, 283, 411-424.
[56]
Gossett, D.; Weaver, W.M.; Mach, A.J.; Hur, S.; Tse, H.T.K.; Lee, W.; Amini, H.; Di Carlo, D. Label-free cell separation and sorting in microfluidic systems. Anal. Bioanal. Chem., 2010, 397(8), 3249-3267.
[57]
Warkiani, M.E.; Lou, C.P.; Gong, H.Q. Fabrication of multi-layer polymeric micro-sieve having narrow slot pores with conventional ultraviolet-lithography and micro-fabrication techniques. Biomicrofluidics, 2011, 5(3), 36504-36509.
[58]
Hudson, S.; Cooney, J.; Magner, E. Proteins in mesoporous silicates. Angew. Chem. Int. Ed., 2008, 47, 8582-8594.
[59]
Lee, C.H.; Lin, T.S.; Mou, C.Y. Mesoporous materials for encapsulating enzymes. Nano Today, 2009, 4(2), 165-179.
[60]
Sotiropoulou, S.; Vamvakaki, V.; Chaniotakis, N.A. Stabilization of enzymes in nanoporous materials for biosensor applications. Biosens. Bioelectron., 2005, 20, 1674-1679.
[61]
Hartmann, M.; Jung, D. Biocatalysis with enzymes immobilized on mesoporous hosts: The status quo and future trends. J. Mater. Chem., 2010, 20, 844-857.
[62]
Schlipf, D.M. Biomolecule localization and surface engineering within size tunable nanoporous silica particles. Ph.D. Thesis in College of Engineering at the University of Kentucky, Lexington, Kentucky, 2015.
[63]
Losic, D.; Mitchell, J.G.; Voelcker, N.H. Diatomaceous lessons in nanotechnology and advanced materials. Adv. Mater., 2009, 21, 2947-2958.
[64]
Losic, D.; Yu, Y.; Aw, M.S.; Simovic, S.; Thierry, B.; Addai-Mensah, J. Surface functionalization of diatoms with dopamine modified iron-oxide nanoparticles: Toward magnetically guided drug microcarriers with biologically derived morphologies. Chem. Commun. , 2010, 46, 6323-6325.
[65]
Aw, M.S.; Simovic, S.; Addai-Mensah, J.; Losic, D. Silica microcapsules from diatoms as new carrier for delivery of therapeutics. Nanomedicine, 2011, 6(7), 1159-1173.
[66]
Aw, M.S.; Simovic, S.; Yu, Y.; Addai-Mensah, J.; Losic, D. Porous silica microshells from diatoms as biocarrier for drug delivery applications. Powder Technol., 2012, 223, 52-58.
[67]
Bariana, M.; Aw, M.S.; Kurkuri, M.; Losic, D. Tuning drug loading and release properties of diatom silica microparticles by surface modifications. Int. J. Pharm., 2013, 443, 230-241.
[68]
Ho, K.Y.; McKay, G.; Yeung, K.L. Selective adsorbents from ordered mesoporous silica. Langmuir, 2003, 19(7), 3019-3024.
[69]
Yoshitake, H.; Yokoi, T.; Tatsumi, T. Adsorption of chromate and arsenate by amino-functionalized MCM-41 and SBA-1. Chem. Mater., 2002, 14(11), 4603-4610.
[70]
Ellis, J.; Hassard, L.; Clark, E.; Harding, J.; Allan, G.; Willson, P.; Haines, D. Isolation of circovirus from lesions of pigs with postweaning multisystemic wasting syndrome. Can. Vet. J., 1998, 39(1), 44-51.
[71]
Brans, G.; Kromkamp, J.; Pek, N.; Gielen, J.; Heck, J.; van Rijn, C.; van der Sman, R.; Schroen, C.; Boom, R.M. Evaluation of microsieve membrane design. J. Membrane. Sci., 2006, 278(1-2), 344-348.
[72]
Huang, X.; Young, N.P.; Townley, H.E. Characterization and comparison of mesoporous silica particles for optimized drug delivery. Nanomater. Nanotechnol., 2014, 4, 2.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy