[1]
Nelson, D.M.; Tréguer, P.; Brzezinski, M.A.; Leynaert, A.; Quéguiner, B. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem. Cycles, 1995, 9, 359.
[2]
Mann, D.G. The species concept in diatoms. Phycologia, 1999, 38(6), 437-495.
[3]
Raven, J.A.; White, A.M. The evolution of silicification in diatoms: Inesplcable sinking and sinking as escape? New Phytol., 2004, 162, 45-61.
[4]
Round, F.E.; Crawford, R.M.; Mann, D.G. The diatoms: Biology and morphology of the genera; Cambridge University Press: Cambridge, 1990.
[5]
Gordon, R.; Losic, D.; Tiffany, M.A.; Nagy, S.S.; Sterrenburg, F.A.S. The glass menagerie: Diatoms for novel applications in nanotechnology. Trends Biotechnol., 2009, 27, 116-127.
[6]
Luís, A.T.; Hlúbiková, D.; Vaché, V.; Choquet, P.; Hoffmann, L.; Ector, L. Atomic force microscopy (AFM) application to diatom study: Review and perspectives. J. Appl. Phycol., 2017, 29(6), 2989-3001.
[7]
Garcia, A.P. Hierarchical and size dependent mechanical properties of silica and silicon nanostructures inspired by diatom algae. M.Sc.
Thesis, Massachusetts institute of technology: Cambridge, Massachusetts,
USA, 2010.
[8]
De Tommasi, E. Light manipulation by single cells: The case of diatoms. J. Spectrosc., 2016, 2016, 1-14.
[9]
Ghobara, M.M.; Vinayak, V.; Smith, D.R.; Schoefs, B.; Gebeshuber, I.C.; Gordon, R. Diatom frustules as photo-regulators of diatom photobiology. In: National symposium on horizons of light in molecules, materials and daily life Gour Central University, Sagar,
India, December 18-19, 2015
[10]
Losic, D.; Rosengarten, G.; Mitchell, J.G.; Voelcker, N.H. Pore architecture of diatom frustules: potential nanostructured membranes for molecular and particle separations. J. Nanosci. Nanotechnol., 2006, 6, 982-989.
[11]
Davis, M.E. Ordered porous materials for emerging applications. Nature, 2002, 417(6891), 813-821.
[12]
Yao, X.; Zhou, S.; Zhou, H.; Fan, T. Pollen-structured hierarchically meso/macroporous silica spheres with supported gold nanoparticles for high-performance catalytic CO oxidation. Mater. Res. Bull., 2017, 92, 129-137.
[13]
Slowing, I.; Trewyn, B.; Giri, S.; Lin, V. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater., 2007, 17(8), 1225-1236.
[14]
Giraldo, L.F.; López, B.L.; Pérez, L.; Urrego, S.; Sierra, L.; Mesa, M. Mesoporous silica applications. Macromol. Symp., 2007, 258(1), 129-141.
[15]
Li, Z.; Barnes, J.C.; Bosoy, A.; Stoddart, J.F.; Zink, J.I. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev., 2012, 41(7), 2590.
[16]
Tsai, C.; Tam, S.; Lu, Y.; Brinker, C. Dual-layer asymmetric microporous silica membranes. J. Membr. Sci., 2000, 169(2), 255-268.
[17]
Willis, L.; Page, K.M.; Broomhead, D.S.; Cox, E.J. Discrete free-boundary reaction-diffusion model of diatom pore occlusions. Plant Ecol. Evol., 2010, 143(3), 297-306.
[18]
Jeffryes, C.; Campbell, J.; Li, H.; Jiao, J.; Rorrer, G.L. The potential of diatom nanobiotechnology for applications in solar cells, batteries and electroluminescent devices. Energy Environ. Sci., 2011, 4(10), 3930-3941.
[19]
Mishler, J.; Blake, P.; Alverson, A.J.; Roper, D.K.; Herzog, J.B. Diatom frustule photonic crystal geometric and optical characterization. Proc. SPIE, 2014, 1971, 19710P.
[20]
Crawford, S.A.; Higgins, M.J.; Mulvaney, P.; Wetherbee, R. Nanostructure of the diatom frustuleas revealed by atomic force and scanning electron microscopy. J. Phycol., 2001, 37, 543-554.
[21]
Gordon, R.; Parkinson, J. Potential roles for diatomists in nanotechnology. J. Nanosci. Nanotechnol., 2005, 5(1), 51-56.
[22]
Losic, D. Diatom nanotechnology: Progress and emerging applications; Royal Society of Chemistry: Cambridge, UK, 2017.
[23]
Townley, H.E.; Parker, A.R.; White-Cooper, H. Exploitation of diatom frustules for nanotechnology: Tethering active biomolecules. Adv. Funct. Mater., 2008, 18, 369-374.
[24]
Gordon, R. Diatoms and nanotechnology: Early history and imagined future as seen through patents.In: The Diatoms: Applications for the Environmental and Earth Sciences; Smol, J.P.; Stoermer, E.F., Eds.; Cambridge University Press: Cambridge, UK, 2014.
[25]
Goodsell, D.S. Bionanotechnology, lessons from nature; Wiley-Liss: New York, 2004.
[26]
Guo, P.X. A special issue on bionanotechnology. preface. J. Nanosci. Nanotechnol., 2005, 5, i-iii.
[27]
Gazit, E. Plenty of room for biology at the bottom: An introduction to bionanotechnology; World Scientific: Singapore, 2007.
[28]
Reisner, D.E. Bionanotechnology: Global prospects; CRC Press: Boca Raton, FL, 2008.
[29]
Dickerson, M.B.; Sandhage, K.H.; Naik, R.R. Proteinand peptide-directed syntheses of inorganic materials. Chem. Rev., 2008, 108, 4935-4978.
[30]
Gebeshuber, I.C.; Stachelberger, H.; Ganji, B.A.; Fu, D.; Yunas, J.; Majlis, B. Exploring the innovational potential of biomimetics for novel 3D MEMS. Adv. Mat. Res., 2009, 74, 265-268.
[31]
Dolatabadi, J.E.N.; de la Guardia, M. Applications of diatoms and silica nanotechnology in biosensing, drug and gene delivery, and formation of complex metal nanostructures, TrAC. Trends Anal. Chem., 2011, 30, 1538-1548.
[32]
Fuhrmann, T.; Landwehr, S.; El Rharbi-Kucki, M.; Sumper, M. Diatoms as living photonic crystals. Appl. Phys. B, 2004, 78, 257-260.
[33]
Zalat, A.A. Distribution and origin of diatoms in the bottom sediments of the Suez canal lakes and adjacent areas, Egypt. Diatom Res., 2002, 17(1), 243-266.
[34]
Taylor, J.C.; De la Rey, P.A.; Van Rensburg, L. Recommendations for the collection, preparation and enumeration of diatoms from riverine habitats for water quality monitoring in South Africa. Afr. J. Aquat. Sci., 2005, 30(1), 65-75.
[35]
Wang, Y.; Cai, J.; Jiang, Y.; Jiang, X.; Zhang, D. Preparation of biosilica structures from frustules of diatoms and their applications: current state and perspectives. Appl. Microbiol. Biotechnol., 2012, 97(2), 453-460.
[36]
Hustedt, F. Die diatomeenflora des fluss-systems der weser im gebiet der hansestadt bremen abhandlungen des naturwissenschaftlichen Verein zu Bremen; Koeltz Scientific Books: Koenigstein, Germany, 1976, Vol. 34, pp. 181-440.
[37]
Hustedt, F. Die Kieselalgen Deutschlands, Österreichs und der
Schweiz. In: Kryptogamenflora von Deutschland, Oesterreich und
der Schweiz, Akad Ver gesel Leipzig. Rabenhorst, L. (ed.), Akademische
Verl.-Ges., Athenaion, 1966.
[38]
Ehrlich, A. Quaternary diatoms of the Hula Basin (Northern Israel). Bull. Geol. Surv. Israel, 1973, 58, 1-39.
[39]
Ehrlich, A. The diatoms from the surface sediments of the bardawil lagoon (Northern Sinai)-Paleoecological significance. Nova Hedwigia, 1975, 53, 253-277.
[40]
Simonsen, R. The diatom system: Ideas on phylogeny. Bacillaria, 1979, 2, 9-72.
[41]
Krammer, K.; Lange-Bertalot, H. Bacillariophyceae. 1 Teil: Naviculaceae.In: Süsswasser-flora von Mitteleuropa; Ettl, H.; Gerloff, J.; Heynig, H.; Mollenhauer, D., Eds.; Gustav Fischer Verlag: New York, 1986, Vol. 2, pp. 1-876.
[42]
Krammer, K.; Lange-Bertalot, H. Bacillariophyceae. 2 Teil: Bacillariaceae, Epithemiaceae, Surirellaceae In.In: Süsswasser-flora von Mitteleuropa; Ettl, H.; Gerloff, J.; Heynig, H.; Mollenhauer, D., Eds.; Gustav Fischer Verlag: New York, 1988, Vol. 2, pp. 1-596.
[43]
Krammer, K.; Lange-Bertalot, H. Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae.In: Süsswasser-flora von Mitteleuropa; Ettl, H.; Gerloff, J.; Heynig, H.; Mollenhauer, D., Eds.; Gustav Fischer Verlag: Jena, 1991, Vol. 2, pp. 1-576. a
[44]
Krammer, K.; Lange-Bertalot, H. Bacillariophyceae. 4 Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema.In: Süsswasser-flora von Mitteleuropa; Ettl, H.; Gerloff, J.; Heynig, H.; Mollenhauer, D., Eds.; Gustav Fischer Verlag: Jena, 1991, Vol. 2, pp. 1-437. b
[45]
Gasse, F. East African diatoms. Taxonomy, ecological distribution. Bibl. Diatomol, 1986, 2, 1-201.
[46]
Foged, N. Diatoms in Egypt. Nova Hedw, 1980, 33, 629-707.
[47]
Foged, N. Some diatoms from Siberia, especially from Lake Baikal. Diatom Res., 1993, 8(2), 231-279.
[48]
Andersen, R.A. Algal culturing techniques; Elsevier: Amsterdam, 2005.
[50]
Willis, L.; Cox, E.J.; Duke, T. A simple probabilistic model of submicroscopic diatom morphogenesis. J. R. Soc. Interface, 2013, 10(20130067), 1-9.
[51]
Yang, W.; Lopezc, P.J.; Rosengarten, G. Diatoms: Self assembled silica nanostructures, and templates for bio/chemical sensors and biomimetic membranes. Analyst, 2011, 136, 42-53.
[52]
Bhatta, H.; Enderlein, J.; Rosengarten, G. Fluorescence correlation spectroscopy to study diffusion through diatom nanopores. J. Nanosci. Nanotechnol., 2009, 9(11), 6760-6766.
[53]
Kuiper, S. Development and application of microsieves. Ph.D.
Thesis. University of Twente, Enschede, Netherlands, 2000
[54]
Nogue, M.G. Inorganic and polymeric microsieves: Strategies to
reduce fouling. Ph.D. Thesis. University of Twente, Enschede,
Netherlands, 2005.
[55]
Gironès, M.; Akbarsyah, I.J.; Nijdam, W.; van Rijn, C.J.M.; Jansen, H.V.; Lammertink, R.G.H.; Wessling, M. Polymeric microsieves produced by phase separation micromolding. J. Membrane. Sci., 2006, 283, 411-424.
[56]
Gossett, D.; Weaver, W.M.; Mach, A.J.; Hur, S.; Tse, H.T.K.; Lee, W.; Amini, H.; Di Carlo, D. Label-free cell separation and sorting in microfluidic systems. Anal. Bioanal. Chem., 2010, 397(8), 3249-3267.
[57]
Warkiani, M.E.; Lou, C.P.; Gong, H.Q. Fabrication of multi-layer polymeric micro-sieve having narrow slot pores with conventional ultraviolet-lithography and micro-fabrication techniques. Biomicrofluidics, 2011, 5(3), 36504-36509.
[58]
Hudson, S.; Cooney, J.; Magner, E. Proteins in mesoporous silicates. Angew. Chem. Int. Ed., 2008, 47, 8582-8594.
[59]
Lee, C.H.; Lin, T.S.; Mou, C.Y. Mesoporous materials for encapsulating enzymes. Nano Today, 2009, 4(2), 165-179.
[60]
Sotiropoulou, S.; Vamvakaki, V.; Chaniotakis, N.A. Stabilization of enzymes in nanoporous materials for biosensor applications. Biosens. Bioelectron., 2005, 20, 1674-1679.
[61]
Hartmann, M.; Jung, D. Biocatalysis with enzymes immobilized on mesoporous hosts: The status quo and future trends. J. Mater. Chem., 2010, 20, 844-857.
[62]
Schlipf, D.M. Biomolecule localization and surface engineering
within size tunable nanoporous silica particles. Ph.D. Thesis in College
of Engineering at the University of Kentucky, Lexington, Kentucky,
2015.
[63]
Losic, D.; Mitchell, J.G.; Voelcker, N.H. Diatomaceous lessons in nanotechnology and advanced materials. Adv. Mater., 2009, 21, 2947-2958.
[64]
Losic, D.; Yu, Y.; Aw, M.S.; Simovic, S.; Thierry, B.; Addai-Mensah, J. Surface functionalization of diatoms with dopamine modified iron-oxide nanoparticles: Toward magnetically guided drug microcarriers with biologically derived morphologies. Chem. Commun. , 2010, 46, 6323-6325.
[65]
Aw, M.S.; Simovic, S.; Addai-Mensah, J.; Losic, D. Silica microcapsules from diatoms as new carrier for delivery of therapeutics. Nanomedicine, 2011, 6(7), 1159-1173.
[66]
Aw, M.S.; Simovic, S.; Yu, Y.; Addai-Mensah, J.; Losic, D. Porous silica microshells from diatoms as biocarrier for drug delivery applications. Powder Technol., 2012, 223, 52-58.
[67]
Bariana, M.; Aw, M.S.; Kurkuri, M.; Losic, D. Tuning drug loading and release properties of diatom silica microparticles by surface modifications. Int. J. Pharm., 2013, 443, 230-241.
[68]
Ho, K.Y.; McKay, G.; Yeung, K.L. Selective adsorbents from ordered mesoporous silica. Langmuir, 2003, 19(7), 3019-3024.
[69]
Yoshitake, H.; Yokoi, T.; Tatsumi, T. Adsorption of chromate and arsenate by amino-functionalized MCM-41 and SBA-1. Chem. Mater., 2002, 14(11), 4603-4610.
[70]
Ellis, J.; Hassard, L.; Clark, E.; Harding, J.; Allan, G.; Willson, P.; Haines, D. Isolation of circovirus from lesions of pigs with postweaning multisystemic wasting syndrome. Can. Vet. J., 1998, 39(1), 44-51.
[71]
Brans, G.; Kromkamp, J.; Pek, N.; Gielen, J.; Heck, J.; van Rijn, C.; van der Sman, R.; Schroen, C.; Boom, R.M. Evaluation of microsieve membrane design. J. Membrane. Sci., 2006, 278(1-2), 344-348.
[72]
Huang, X.; Young, N.P.; Townley, H.E. Characterization and comparison of mesoporous silica particles for optimized drug delivery. Nanomater. Nanotechnol., 2014, 4, 2.