Review Article

在计算机化学基因组学中,对被忽视热带病的药物重新定位策略

卷 26, 期 23, 2019

页: [4355 - 4379] 页: 25

弟呕挨: 10.2174/0929867325666180309114824

价格: $65

摘要

在过去几十年里,所有针对被忽视热带病的候选药物中,只有1%达到了临床试验,这突出了对新的、安全和有效的治疗方法的需求。在这种情况下,药物重新定位,即允许为已获批准的药物寻找新的适应症,而这些药物的药代动力学和安全性已经为人所知,这是对付结核分枝杆菌的一个有希望的战略。化学基因组学是典型的药物发现过程的直接后裔,该过程包括在高通量筛选(HTS)努力中,针对药物靶标系统筛选化合物,以识别先导化合物。然而,不同于单药单靶点模式,化学基因组学试图识别所有可能的靶点和疾病的所有潜在配体。在这篇综述中,我们总结了目前使用最先进的计算配体和基于结构的化学基因组学方法进行药物重新定位的方法学开发工作。此外,我们强调了基于基因组、生物和化学数据的管理和建模的一些ntd的计算药物重新定位的最新进展。此外,我们还提供了内部和其他成功的例子,并对现有的缺陷提出了可能的解决方案。

关键词: 被忽视的热带病,药物重新定位,化学基因组学,相似性搜索,机器学习,药效团,蛋白质比对,对接。

[1]
Buscaglia, C.A.; Kissinger, J.C.; Agüero, F. Neglected tropical diseases in the post-genomic era. Trends Genet., 2015, 31(10), 539-555.
[http://dx.doi.org/10.1016/j.tig.2015.06.002] [PMID: 26450337]
[2]
Centers for Disease Control and Prevention.. Neglected tropical diseases., http://www.cdc.gov/globalhealth/ntd/diseases/index.html (Accessed July 18, 2016).
[3]
World Health Organization. Neglected tropical diseases., http://www.who.int/neglected_diseases/diseases/en (Accessed July 20, 2016).
[4]
Zijlstra, E.E.; van de Sande, W.W.J.; Welsh, O.; Mahgoub, E.S.; Goodfellow, M.; Fahal, A.H. Mycetoma: a unique neglected tropical disease. Lancet Infect. Dis., 2016, 16(1), 100-112.
[http://dx.doi.org/10.1016/S1473-3099(15)00359-X] [PMID: 26738840]
[5]
Waheed, A.A.; Ghanchi, N.K.; Rehman, K.A.; Raza, A.; Mahmood, S.F.; Beg, M.A. Vivax malaria and chloroquine resistance: a neglected disease as an emerging threat. Malar. J., 2015, 14, 146.
[http://dx.doi.org/10.1186/s12936-015-0660-0] [PMID: 25889875]
[6]
Bassat, Q.; Velarde, M.; Mueller, I.; Lin, J.; Leslie, T.; Wongsrichanalai, C.; Baird, J.K. Key knowledge gaps for Plasmodium vivax control and elimination. Am. J. Trop. Med. Hyg., 2016, 95(6)(Suppl.), 62-71.
[http://dx.doi.org/10.4269/ajtmh.16-0180] [PMID: 27430544]
[7]
Litt, E.; Baker, M.C.; Molyneux, D. Neglected tropical diseases and mental health: a perspective on comorbidity. Trends Parasitol., 2012, 28(5), 195-201.
[http://dx.doi.org/10.1016/j.pt.2012.03.001] [PMID: 22475459]
[8]
Weiss, M.G. Stigma and the social burden of neglected tropical diseases. PLoS Negl. Trop. Dis., 2008, 2(5)e237
[http://dx.doi.org/10.1371/journal.pntd.0000237] [PMID: 18478049]
[9]
Hofstraat, K.; van Brakel, W.H. Social stigma towards neglected tropical diseases: a systematic review. Int. Health, 2016, 8(Suppl. 1), i53-i70.
[http://dx.doi.org/10.1093/inthealth/ihv071] [PMID: 26940310]
[10]
Nwaka, S.; Hudson, A. Innovative lead discovery strategies for tropical diseases. Nat. Rev. Drug Discov., 2006, 5(11), 941-955.
[http://dx.doi.org/10.1038/nrd2144] [PMID: 17080030]
[11]
Wyatt, P.G.; Gilbert, I.H.; Read, K.D.; Fairlamb, A.H. Target validation: linking target and chemical properties to desired product profile. Curr. Top. Med. Chem., 2011, 11(10), 1275-1283.
[http://dx.doi.org/10.2174/156802611795429185] [PMID: 21401506]
[12]
Renslo, A.R.; McKerrow, J.H. Drug discovery and development for neglected parasitic diseases. Nat. Chem. Biol., 2006, 2(12), 701-710.
[http://dx.doi.org/10.1038/nchembio837] [PMID: 17108988]
[13]
Tibayrenc, M.; Ayala, F.J. Reproductive clonality of pathogens: A perspective on pathogenic viruses, bacteria, fungi, and parasitic protozoa. Proc. Natl. Acad. Sci. USA, 2012, 109(48), E3305-E3313.
[http://dx.doi.org/10.1073/pnas.1212452109] [PMID: 22949662]
[14]
DiMasi, J.A.; Hansen, R.W.; Grabowski, H.G. The price of innovation: New estimates of drug development costs. J. Health Econ., 2003, 22(2), 151-185.
[http://dx.doi.org/10.1016/S0167-6296(02)00126-1] [PMID: 12606142]
[15]
Kola, I.; Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov., 2004, 3(8), 711-715.
[http://dx.doi.org/10.1038/nrd1470] [PMID: 15286737]
[16]
Goupil, L.S.; McKerrow, J.H. Introduction: drug discovery and development for neglected diseases. Chem. Rev., 2014, 114(22), 11131-11137.
[http://dx.doi.org/10.1021/cr500546h] [PMID: 26721412]
[17]
DiMasi, J.A.; Feldman, L.; Seckler, A.; Wilson, A. Trends in risks associated with new drug development: success rates for investigational drugs. Clin. Pharmacol. Ther., 2010, 87(3), 272-277.
[http://dx.doi.org/10.1038/clpt.2009.295] [PMID: 20130567]
[18]
Pedrique, B.; Strub-Wourgaft, N.; Some, C.; Olliaro, P.; Trouiller, P.; Ford, N.; Pécoul, B.; Bradol, J-H. The drug and vaccine landscape for neglected diseases (2000-11): a systematic assessment. Lancet Glob. Health, 2013, 1(6), e371-e379.
[http://dx.doi.org/10.1016/S2214-109X(13)70078-0] [PMID: 25104602]
[19]
Aubé, J. Drug repurposing and the medicinal chemist. ACS Med. Chem. Lett., 2012, 3(6), 442-444.
[http://dx.doi.org/10.1021/ml300114c] [PMID: 24900492]
[20]
Ashburn, T.T.; Thor, K.B. Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[21]
Chong, C.R.; Sullivan, D.J., Jr New uses for old drugs. Nature, 2007, 448(7154), 645-646.
[http://dx.doi.org/10.1038/448645a] [PMID: 17687303]
[22]
Sbaraglini, M.L.; Vanrell, M.C.; Bellera, C.L.; Benaim, G.; Carrillo, C.; Talevi, A.; Romano, P.S. Neglected tropical protozoan diseases: Drug repositioning as a rational option. Curr. Top. Med. Chem., 2016, 16(19), 2201-2222.
[http://dx.doi.org/10.2174/1568026616666160216154309] [PMID: 26881713]
[23]
Novac, N. Challenges and opportunities of drug repositioning. Trends Pharmacol. Sci., 2013, 34(5), 267-272.
[http://dx.doi.org/10.1016/j.tips.2013.03.004] [PMID: 23582281]
[24]
Jin, G.; Wong, S.T.C. Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov. Today, 2014, 19(5), 637-644.
[http://dx.doi.org/10.1016/j.drudis.2013.11.005] [PMID: 24239728]
[25]
Sildenafil: an oral drug for impotence. Med. Lett. Drugs Ther., 1998, 40(1026), 51-52.
[PMID: 9599594]
[26]
Bolgár, B.; Arany, Á.; Temesi, G.; Balogh, B.; Antal, P.; Mátyus, P. Drug repositioning for treatment of movement disorders: from serendipity to rational discovery strategies. Curr. Top. Med. Chem., 2013, 13(18), 2337-2363.
[http://dx.doi.org/10.2174/15680266113136660164] [PMID: 24059461]
[27]
Sindermann, H.; Croft, S.L.; Engel, K.R.; Bommer, W.; Eibl, H.J.; Unger, C.; Engel, J. Miltefosine (Impavido): the first oral treatment against leishmaniasis. Med. Microbiol. Immunol. (Berl.), 2004, 193(4), 173-180.
[http://dx.doi.org/10.1007/s00430-003-0201-2] [PMID: 14513375]
[28]
Berman, J. Miltefosine, an FDA-Approved Drug for the “orphan Disease”. Leishmaniasis. Expert Opin. Orphan. Drugs, 2015, 3, 727-735.
[http://dx.doi.org/10.1517/21678707.2015.1039510]
[29]
Santos, A.T.; Blas, B.L.; Noseñas, J.S.; Portillo, G.P.; Ortega, O.M.; Hayashi, M.; Boehme, K. Preliminary clinical trials with praziquantel in Schistosoma japonicum infections in the Philippines. Bull. World Health Organ., 1979, 57(5), 793-799.
[PMID: 396056]
[30]
McMahon, J.E. Praziquantel: a new schistosomicide against Schistosoma mansoni. Arzneimittelforschung, 1981, 31(3a), 592-594.
[PMID: 7195252]
[31]
McMahon, J.E.; Kolstrup, N. Praziquantel: a new schistosomicide against Schistosoma haematobium. BMJ, 1979, 2(6202), 1396-1399.
[http://dx.doi.org/10.1136/bmj.2.6202.1396] [PMID: 519476]
[32]
Sundar, S.; Jha, T.K.; Thakur, C.P.; Engel, J.; Sindermann, H.; Fischer, C.; Junge, K.; Bryceson, A.; Berman, J. Oral miltefosine for Indian visceral leishmaniasis. N. Engl. J. Med., 2002, 347(22), 1739-1746.
[http://dx.doi.org/10.1056/NEJMoa021556] [PMID: 12456849]
[33]
Ben Salah, A.; Ben Messaoud, N.; Guedri, E.; Zaatour, A.; Ben Alaya, N.; Bettaieb, J.; Gharbi, A.; Belhadj Hamida, N.; Boukthir, A.; Chlif, S.; Abdelhamid, K.; El Ahmadi, Z.; Louzir, H.; Mokni, M.; Morizot, G.; Buffet, P.; Smith, P.L.; Kopydlowski, K.M.; Kreishman-Deitrick, M.; Smith, K.S.; Nielsen, C.J.; Ullman, D.R.; Norwood, J.A.; Thorne, G.D.; McCarthy, W.F.; Adams, R.C.; Rice, R.M.; Tang, D.; Berman, J.; Ransom, J.; Magill, A.J.; Grogl, M. Topical paromomycin with or without gentamicin for cutaneous leishmaniasis. N. Engl. J. Med., 2013, 368(6), 524-532.
[http://dx.doi.org/10.1056/NEJMoa1202657] [PMID: 23388004]
[34]
Sundar, S.; Jha, T.K.; Thakur, C.P.; Sinha, P.K.; Bhattacharya, S.K. Injectable paromomycin for Visceral leishmaniasis in India. N. Engl. J. Med., 2007, 356(25), 2571-2581.
[http://dx.doi.org/10.1056/NEJMoa066536] [PMID: 17582067]
[35]
Neal, R.A.; Murphy, A.G.; Olliaro, P.; Croft, S.L. Aminosidine ointments for the treatment of experimental cutaneous leishmaniasis. Trans. R. Soc. Trop. Med. Hyg., 1994, 88(2), 223-225.
[http://dx.doi.org/10.1016/0035-9203(94)90307-7] [PMID: 8036682]
[36]
Berman, J.D.U.S.U. S Food and Drug Administration approval of AmBisome (liposomal amphotericin B) for treatment of visceral leishmaniasis. Clin. Infect. Dis., 1999, 28(1), 49-51.
[http://dx.doi.org/10.1086/515086] [PMID: 10391695]
[37]
Bern, C.; Adler-Moore, J.; Berenguer, J.; Boelaert, M.; den Boer, M.; Davidson, R.N.; Figueras, C.; Gradoni, L.; Kafetzis, D.A.; Ritmeijer, K.; Rosenthal, E.; Royce, C.; Russo, R.; Sundar, S.; Alvar, J. Liposomal amphotericin B for the treatment of visceral leishmaniasis. Clin. Infect. Dis., 2006, 43(7), 917-924.
[http://dx.doi.org/10.1086/507530] [PMID: 16941377]
[38]
Sundar, S.; Chakravarty, J.; Agarwal, D.; Rai, M.; Murray, H.W. Single-dose liposomal amphotericin B for visceral leishmaniasis in India. N. Engl. J. Med., 2010, 362(6), 504-512.
[http://dx.doi.org/10.1056/NEJMoa0903627] [PMID: 20147716]
[39]
Sampaio, S.A.; Castro, R.M.; Dillon, N.L.; Martins, J.E. Treatment of mucocutaneous (American) leishmaniasis with amphotericin B: report of 70 cases. Int. J. Dermatol., 1971, 10(3), 179-181.
[http://dx.doi.org/10.1111/j.1365-4362.1971.tb01694.x] [PMID: 5116171]
[40]
Crofts, M.A. Use of amphotericin B in mucocutaneous leishmaniasis. J. Trop. Med. Hyg., 1976, 79(5), 111-113.
[PMID: 933229]
[41]
ClinicalTrials.gov. High dose fluconazole in cutaneous leishmaniasis in bahia and manaus., https://clinicaltrials.gov/ct2/show/NCT01953744 (Accessed July 21, 2016).
[42]
Emad, M.; Hayati, F.; Fallahzadeh, M.K.; Namazi, M.R. Superior efficacy of oral fluconazole 400 mg daily versus oral fluconazole 200 mg daily in the treatment of cutaneous leishmania major infection: a randomized clinical trial. J. Am. Acad. Dermatol., 2011, 64(3), 606-608.
[http://dx.doi.org/10.1016/j.jaad.2010.04.014] [PMID: 21315963]
[43]
Sousa, A.Q.; Frutuoso, M.S.; Moraes, E.A.; Pearson, R.D.; Pompeu, M.M.L. High-dose oral fluconazole therapy effective for cutaneous leishmaniasis due to Leishmania (Vianna) braziliensis. Clin. Infect. Dis., 2011, 53(7), 693-695.
[http://dx.doi.org/10.1093/cid/cir496] [PMID: 21890773]
[44]
Sousa, A.Q.; Lima Pompeu, M.M.; Pearson, R.D. Disseminated cutaneous leishmaniasis, a patient with 178 lesions cured with fluconazole. Am. J. Trop. Med. Hyg., 2016, 94(1), 1-2.
[http://dx.doi.org/10.4269/ajtmh.15-0211] [PMID: 26740094]
[45]
de Sá Oliveira, T.; Capp Neto, M.; Martins, B.J.; Rodrigues, H.A.; Antonino, R.M.; Magalhães, A.V. Action of pentoxifylline on experimental cutaneous leishmaniasis due to Leishmania (Leishmania) amazonensis. Mem. Inst. Oswaldo Cruz, 2000, 95(4), 477-482.
[http://dx.doi.org/10.1590/S0074-02762000000400006] [PMID: 10904402]
[46]
Lessa, H.A.; Machado, P.; Lima, F.; Cruz, A.A.; Bacellar, O.; Guerreiro, J.; Carvalho, E.M. Successful treatment of refractory mucosal leishmaniasis with pentoxifylline plus antimony. Am. J. Trop. Med. Hyg., 2001, 65(2), 87-89.
[http://dx.doi.org/10.4269/ajtmh.2001.65.87] [PMID: 11508396]
[47]
ClinicalTrials.gov. Antimony plus pentoxifylline in cutaneous leishmaniasis., https://clinicaltrials.gov/ct2/show/NCT01381055 (Accessed July 21, 2016).
[48]
Martinez, S.; Marr, J.J. Allopurinol in the treatment of American cutaneous leishmaniasis. N. Engl. J. Med., 1992, 326(11), 741-744.
[http://dx.doi.org/10.1056/NEJM199203123261105] [PMID: 1738379]
[49]
Barzilai, A.; Friedman, J.; Trau, H. Treatment of cutaneous leishmaniasis with allopurinol. J. Am. Acad. Dermatol., 1995, 32(3), 518.
[http://dx.doi.org/10.1016/0190-9622(95)90093-4] [PMID: 7868728]
[50]
Martinez, S.; Gonzalez, M.; Vernaza, M.E. Treatment of cutaneous leishmaniasis with allopurinol and stibogluconate. Clin. Infect. Dis., 1997, 24(2), 165-169.
[http://dx.doi.org/10.1093/clinids/24.2.165] [PMID: 9114142]
[51]
Schmid, C.; Kuemmerle, A.; Blum, J.; Ghabri, S.; Kande, V.; Mutombo, W.; Ilunga, M.; Lumpungu, I.; Mutanda, S.; Nganzobo, P.; Tete, D.; Mubwa, N.; Kisala, M.; Blesson, S.; Mordt, O.V. In-hospital safety in field conditions of nifurtimox eflornithine combination therapy (NECT) for T. b. gambiense sleeping sickness. PLoS Negl. Trop. Dis., 2012, 6(11)e1920
[http://dx.doi.org/10.1371/journal.pntd.0001920] [PMID: 23209861]
[52]
Opigo, J.; Woodrow, C. NECT trial: more than a small victory over sleeping sickness. Lancet, 2009, 374(9683), 7-9.
[http://dx.doi.org/10.1016/S0140-6736(09)61163-6] [PMID: 19559477]
[53]
Priotto, G.; Kasparian, S.; Mutombo, W.; Ngouama, D.; Ghorashian, S.; Arnold, U.; Ghabri, S.; Baudin, E.; Buard, V.; Kazadi-Kyanza, S.; Ilunga, M.; Mutangala, W.; Pohlig, G.; Schmid, C.; Karunakara, U.; Torreele, E.; Kande, V. Nifurtimox-eflornithine combination therapy for second-stage African Trypanosoma brucei gambiense trypanosomiasis: a multicentre, randomised, phase III, non-inferiority trial. Lancet, 2009, 374(9683), 56-64.
[http://dx.doi.org/10.1016/S0140-6736(09)61117-X] [PMID: 19559476]
[54]
Alirol, E.; Schrumpf, D.; Amici Heradi, J.; Riedel, A.; de Patoul, C.; Quere, M.; Chappuis, F. Nifurtimox-eflornithine combination therapy for second-stage gambiense human African trypanosomiasis: Médecins Sans Frontières experience in the Democratic Republic of the Congo. Clin. Infect. Dis., 2013, 56(2), 195-203.
[http://dx.doi.org/10.1093/cid/cis886] [PMID: 23074318]
[55]
Pohlig, G.; Bernhard, S.C.; Blum, J.; Burri, C.; Mpanya, A.; Lubaki, J-P.F.; Mpoto, A.M.; Munungu, B.F.; N’tombe, P.M.; Deo, G.K.M.; Mutantu, P.N.; Kuikumbi, F.M.; Mintwo, A.F.; Munungi, A.K.; Dala, A.; Macharia, S.; Bilenge, C.M.M.; Mesu, V.K.B.K.; Franco, J.R.; Dituvanga, N.D.; Tidwell, R.R.; Olson, C.A. Efficacy and safety of pafuramidine versus pentamidine maleate for treatment of first stage sleeping sickness in a randomized, comparator-controlled, international phase 3 clinical trial. PLoS Negl. Trop. Dis., 2016, 10(2)e0004363
[http://dx.doi.org/10.1371/journal.pntd.0004363] [PMID: 26882015]
[56]
ClinicalTrials.gov. Trial of DB289 for the treatment of stage I african trypanosomiasis., https://clinicaltrials.gov/ct2/show/NCT00803933 (Accessed July 21, 2016).
[57]
Mdachi, R.E.; Thuita, J.K.; Kagira, J.M.; Ngotho, J.M.; Murilla, G.A.; Ndung’u, J.M.; Tidwell, R.R.; Hall, J.E.; Brun, R. Efficacy of the novel diamidine compound 2,5-Bis(4-amidinophenyl)- furan-bis-O-Methlylamidoxime (Pafuramidine, DB289) against Trypanosoma brucei rhodesiense infection in vervet monkeys after oral administration. Antimicrob. Agents Chemother., 2009, 53(3), 953-957.
[http://dx.doi.org/10.1128/AAC.00831-08] [PMID: 19064893]
[58]
Tarral, A.; Blesson, S.; Mordt, O.V.; Torreele, E.; Sassella, D.; Bray, M.A.; Hovsepian, L.; Evène, E.; Gualano, V.; Felices, M.; Strub-Wourgaft, N. Determination of an optimal dosing regimen for fexinidazole, a novel oral drug for the treatment of human African trypanosomiasis: first-in-human studies. Clin. Pharmacokinet., 2014, 53(6), 565-580.
[http://dx.doi.org/10.1007/s40262-014-0136-3] [PMID: 24535888]
[59]
ClinicalTrials.gov. Pivotal study of fexinidazole for human african trypanosomiasis in stage 2.. https://clinicaltrials.gov/ct2/show/NCT01685827 (Accessed July 21, 2016).
[60]
ClinicalTrials.gov. Study to evaluate fexinidazole dosing regimens for the treatment of adult patients with chagas disease., https://clinicaltrials.gov/ct2/show/NCT02498782 (Accessed July 23, 2016).
[61]
ClinicalTrials.gov. Trial to determine efficacy of fexinidazole in visceral leihmaniasis patients in sudan., https://clinicaltrials.gov/ct2/show/NCT01980199 (Accessed July 23, 2016).
[63]
Kitchen, L.W.; Vaughn, D.W.; Skillman, D.R. Role of US military research programs in the development of US Food and Drug Administration--approved antimalarial drugs. Clin. Infect. Dis., 2006, 43(1), 67-71.
[http://dx.doi.org/10.1086/504873] [PMID: 16758420]
[64]
Andersen, S.L.; Oloo, A.J.; Gordon, D.M.; Ragama, O.B.; Aleman, G.M.; Berman, J.D.; Tang, D.B.; Dunne, M.W.; Shanks, G.D. Successful double-blinded, randomized, placebo-controlled field trial of azithromycin and doxycycline as prophylaxis for malaria in western Kenya. Clin. Infect. Dis., 1998, 26(1), 146-150.
[http://dx.doi.org/10.1086/516281] [PMID: 9455524]
[65]
Hart, J.D.; Edwards, T.; Burr, S.E.; Harding-Esch, E.M.; Takaoka, K.; Holland, M.J.; Sillah, A.; Mabey, D.C.W.; Bailey, R.L. Effect of azithromycin mass drug administration for trachoma on spleen rates in Gambian children. Trop. Med. Int. Health, 2014, 19(2), 207-211.
[http://dx.doi.org/10.1111/tmi.12234] [PMID: 24433194]
[66]
Burr, S.E.; Hart, J.; Edwards, T.; Harding-Esch, E.M.; Holland, M.J.; Mabey, D.C.W.; Sillah, A.; Bailey, R.L. Anthropometric indices of Gambian children after one or three annual rounds of mass drug administration with azithromycin for trachoma control. BMC Public Health, 2014, 14, 1176.
[http://dx.doi.org/10.1186/1471-2458-14-1176] [PMID: 25407464]
[67]
Pang, L.; Limsomwong, N.; Singharaj, P. Prophylactic treatment of vivax and falciparum malaria with low-dose doxycycline. J. Infect. Dis., 1988, 158(5), 1124-1127.
[http://dx.doi.org/10.1093/infdis/158.5.1124] [PMID: 3053925]
[68]
Supali, T.; Djuardi, Y.; Pfarr, K.M.; Wibowo, H.; Taylor, M.J.; Hoerauf, A.; Houwing-Duistermaat, J.J.; Yazdanbakhsh, M.; Sartono, E. Doxycycline treatment of Brugia malayi-infected persons reduces microfilaremia and adverse reactions after diethylcarbamazine and albendazole treatment. Clin. Infect. Dis., 2008, 46(9), 1385-1393.
[http://dx.doi.org/10.1086/586753] [PMID: 18419441]
[69]
Taylor, M.J.; Makunde, W.H.; McGarry, H.F.; Turner, J.D.; Mand, S.; Hoerauf, A. Macrofilaricidal activity after doxycycline treatment of Wuchereria bancrofti: a double-blind, randomised placebo-controlled trial. Lancet, 2005, 365(9477), 2116-2121.
[http://dx.doi.org/10.1016/S0140-6736(05)66591-9] [PMID: 15964448]
[70]
Taylor, M.J.; Hoerauf, A.; Bockarie, M. Lymphatic filariasis and onchocerciasis. Lancet, 2010, 376(9747), 1175-1185.
[http://dx.doi.org/10.1016/S0140-6736(10)60586-7] [PMID: 20739055]
[71]
Tamarozzi, F.; Tendongfor, N.; Enyong, P.A.; Esum, M.; Faragher, B.; Wanji, S.; Taylor, M.J. Long term impact of large scale community-directed delivery of doxycycline for the treatment of onchocerciasis. Parasit. Vectors, 2012, 5, 53.
[http://dx.doi.org/10.1186/1756-3305-5-53] [PMID: 22433114]
[72]
Hoerauf, A.; Specht, S.; Büttner, M.; Pfarr, K.; Mand, S.; Fimmers, R.; Marfo-Debrekyei, Y.; Konadu, P.; Debrah, A.Y.; Bandi, C.; Brattig, N.; Albers, A.; Larbi, J.; Batsa, L.; Taylor, M.J.; Adjei, O.; Büttner, D.W. Wolbachia endobacteria depletion by doxycycline as antifilarial therapy has macrofilaricidal activity in onchocerciasis: a randomized placebo-controlled study. Med. Microbiol. Immunol. , 2008, 197(3), 295-311.
[http://dx.doi.org/10.1007/s00430-007-0062-1] [PMID: 17999080]
[73]
Rim, H.J.; Park, S.B.; Lee, J.S.; Joo, K.H. Therapeutic effects of praziquantel (Embay 8440) against taenia solium infection. Korean J. Parasitol., 1979, 17(1), 67-72.
[http://dx.doi.org/10.3347/kjp.1979.17.1.67] [PMID: 12902762]
[74]
Zwierz, C.; Machnicka, B. Treatment with praziquantel the Taenia saginata infection in men. Bull. Inst. Marit. Trop. Med. Gdynia, 1985, 36(1-4), 77-80.
[PMID: 3841827]
[75]
Rim, H.J.; Park, C.Y.; Lee, J.S.; Joo, K.H.; Lyu, K.S. Therapeutic effects of praziquantel (embay 8440) against hymenolepis nana infection. Korean J. Parasitol., 1978, 16(2), 82-87.
[http://dx.doi.org/10.3347/kjp.1978.16.2.82] [PMID: 12902768]
[76]
Xiao, S.H. Development of antischistosomal drugs in China, with particular consideration to praziquantel and the artemisinins. Acta Trop., 2005, 96(2-3), 153-167.
[http://dx.doi.org/10.1016/j.actatropica.2005.07.010] [PMID: 16112072]
[77]
Liu, Y-X.; Wu, W.; Liang, Y-J.; Jie, Z-L.; Wang, H.; Wang, W.; Huang, Y-X. New uses for old drugs: The tale of artemisinin derivatives in the elimination of schistosomiasis japonica in China. Molecules, 2014, 19(9), 15058-15074.
[http://dx.doi.org/10.3390/molecules190915058] [PMID: 25244286]
[78]
Saeed, M.E.M.; Krishna, S.; Greten, H.J.; Kremsner, P.G.; Efferth, T. Antischistosomal activity of artemisinin derivatives in vivo and in patients. Pharmacol. Res., 2016, 110, 216-226.
[http://dx.doi.org/10.1016/j.phrs.2016.02.017] [PMID: 26902577]
[79]
Pérez del Villar, L.; Burguillo, F.J.; López-Abán, J.; Muro, A. Systematic review and meta-analysis of artemisinin based therapies for the treatment and prevention of schistosomiasis. PLoS One, 2012, 7(9)e45867
[http://dx.doi.org/10.1371/journal.pone.0045867] [PMID: 23029285]
[80]
Basra, A.; Mombo-Ngoma, G.; Melser, M.C.; Diop, D.A.; Würbel, H.; Mackanga, J-R.; Fürstenau, M.; Zoleko, R.M.; Adegnika, A.A.; Gonzalez, R.; Menendez, C.; Kremsner, P.G.; Ramharter, M. Efficacy of mefloquine intermittent preventive treatment in pregnancy against Schistosoma haematobium infection in Gabon: a nested randomized controlled assessor-blinded clinical trial. Clin. Infect. Dis., 2013, 56(6), e68-e75.
[http://dx.doi.org/10.1093/cid/cis976] [PMID: 23175561]
[81]
ClinicalTrials.gov. Activity of mefloquine against urinary schistosomiasis., https://clinicaltrials.gov/ct2/show/NCT01132248 (Accessed July 21, 2016).
[82]
Barakat, R.; Abou El-Ela, N.E.; Sharaf, S.; El Sagheer, O.; Selim, S.; Tallima, H.; Bruins, M.J.; Hadley, K.B.; El Ridi, R. Efficacy and safety of arachidonic acid for treatment of school-age children in Schistosoma mansoni high-endemicity regions. Am. J. Trop. Med. Hyg., 2015, 92(4), 797-804.
[http://dx.doi.org/10.4269/ajtmh.14-0675] [PMID: 25624403]
[83]
ClinicalTrials.gov. Arachidonic acid treatment against schistosomiasis infection in children., https://clinicaltrials.gov/ct2/show/NCT02144389 (Accessed July 23, 2016).
[84]
Swinton, N.W., Jr; Reaves, L.E. III Successful therapy of Strongyloidiasis with thiabendazole. Lahey Clin. Found. Bull., 1965, 14(3), 117-120.
[PMID: 5857442]
[85]
Baranski, M.C.; Carneiro Filho, M. [Massive infestation with larva migrans. Treatment with thiabendazole Rev. Bras. Med., 1966, 23(4), 233-235.
[PMID: 5941417]
[86]
Thiabendazole (Mintezol)--a new anthelmintic. Med. Lett. Drugs Ther., 1967, 9(25), 99-101.
[PMID: 6082379]
[87]
Van de Erve, J. Systemic thiabendazole treatment of creeping eruption. J. S. C. Med. Assoc., 1966, 62(7), 263-264.
[PMID: 5223214]
[88]
Ottesen, E.A.; Ismail, M.M.; Horton, J. The role of albendazole in programmes to eliminate lymphatic filariasis.Parasitol. Today (Regul. Ed.); , 1999, 15, pp. (9)382-386.
[http://dx.doi.org/ 10.1016/S0169-4758(99)01486-6] [PMID: 10461168]
[89]
Bethony, J.; Brooker, S.; Albonico, M.; Geiger, S.M.; Loukas, A.; Diemert, D.; Hotez, P.J. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet, 2006, 367(9521), 1521-1532.
[http://dx.doi.org/10.1016/S0140-6736(06)68653-4] [PMID: 16679166]
[90]
ClinicalTrials.gov. Efficacy and microfilaricidal kinetics of imatinib for the treatment of Loa Loa., https://clinicaltrials.gov/ct2/show/NCT02644525 (Accessed July 21, 2016).
[91]
O’Connell, E.M.; Bennuru, S.; Steel, C.; Dolan, M.A.; Nutman, T.B. Targeting filarial Abl-like kinases: Orally available, food and drug administration-approved tyrosine kinase inhibitors are microfilaricidal and macrofilaricidal. J. Infect. Dis., 2015, 212(5), 684-693.
[http://dx.doi.org/10.1093/infdis/jiv065] [PMID: 25657255]
[92]
Crisford, A.; Ebbinghaus-Kintscher, U.; Schoenhense, E.; Harder, A.; Raming, K.; O’Kelly, I.; Ndukwe, K.; O’Connor, V.; Walker, R.J.; Holden-Dye, L. The cyclooctadepsipeptide anthelmintic emodepside differentially modulates nematode, insect and human calcium-activated potassium (SLO) channel alpha subunits. PLoS Negl. Trop. Dis., 2015, 9(10)e0004062
[http://dx.doi.org/10.1371/journal.pntd.0004062] [PMID: 26437177]
[93]
ClinicalTrials.gov. First in man clinical trial of emodepside (BAY 44-4400). https://clinicaltrials.gov/ct2/show/NCT02661178 (Accessed July 25, 2016).
[94]
Awadzi, K.; Opoku, N.O.; Attah, S.K.; Lazdins-Helds, J.; Kuesel, A.C.A. A randomized, single-ascending-dose, ivermectin-controlled, double-blind study of moxidectin in Onchocerca volvulus infection. PLoS Negl. Trop. Dis., 2014, 8(6)e2953
[http://dx.doi.org/10.1371/journal.pntd.0002953] [PMID: 24968000]
[95]
ClinicalTrials.gov. Study evaluating orally administered moxidectin in subjects with onchocerca volvulus infection., https://clinicaltrials.gov/ct2/show/NCT00300768 (Accessed July 25, 2016).
[96]
Tagboto, S.K.; Townson, S. Onchocerca volvulus and O. lienalis: the microfilaricidal activity of moxidectin compared with that of ivermectin in vitro and in vivo. Ann. Trop. Med. Parasitol., 1996, 90(5), 497-505.
[http://dx.doi.org/10.1080/00034983.1996.11813075] [PMID: 8915126]
[97]
Lindley, D. Merck’s new drug free to WHO for river blindness programme. Nature, 1987, 329(6142), 752-752.
[http://dx.doi.org/10.1038/329752a0] [PMID: 3670379]
[98]
White, A.T.; Newland, H.S.; Taylor, H.R.; Erttmann, K.D.; Keyvan-Larijani, E.; Nara, A.; Aziz, M.A.; D’Anna, S.A.; Williams, P.N.; Greene, B.M. Controlled trial and dose-finding study of ivermectin for treatment of onchocerciasis. J. Infect. Dis., 1987, 156(3), 463-470.
[http://dx.doi.org/10.1093/infdis/156.3.463] [PMID: 3302053]
[99]
Nightingale, S.L. From the food and drug administration. JAMA, 1997, 277(9), 703.
[http://dx.doi.org/10.1001/jama.1997.03540330027012] [PMID: 9042830]
[100]
Marti, H.; Haji, H.J.; Savioli, L.; Chwaya, H.M.; Mgeni, A.F.; Ameir, J.S.; Hatz, C. A comparative trial of a single-dose ivermectin versus three days of albendazole for treatment of Strongyloides stercoralis and other soil-transmitted helminth infections in children. Am. J. Trop. Med. Hyg., 1996, 55(5), 477-481.
[http://dx.doi.org/10.4269/ajtmh.1996.55.477] [PMID: 8940976]
[101]
Rossignol, J.F.; Abaza, H.; Friedman, H. Successful treatment of human fascioliasis with nitazoxanide. Trans. R. Soc. Trop. Med. Hyg., 1998, 92(1), 103-104.
[http://dx.doi.org/10.1016/S0035-9203(98)90974-9] [PMID: 9692168]
[102]
Zumaquero-Ríos, J.L.; Sarracent-Pérez, J.; Rojas-García, R.; Rojas-Rivero, L.; Martínez-Tovilla, Y.; Valero, M.A.; Mas-Coma, S. Fascioliasis and intestinal parasitoses affecting schoolchildren in Atlixco, Puebla State, Mexico: epidemiology and treatment with nitazoxanide. PLoS Negl. Trop. Dis., 2013, 7(11)e2553
[http://dx.doi.org/10.1371/journal.pntd.0002553] [PMID: 24278492]
[103]
Galvan-Ramirez, M.L.; Rivera, N.; Loeza, M.E.; Avila, X.; Acero, J.; Troyo, R.; Bernal, R. Nitazoxanide in the treatment of Ascaris lumbricoides in a rural zone of Colima, Mexico. J. Helminthol., 2007, 81(3), 255-259.
[http://dx.doi.org/10.1017/S0022149X07747466] [PMID: 17594741]
[104]
Rossignol, J.F.; Maisonneuve, H. Nitazoxanide in the treatment of Taenia saginata and Hymenolepis nana infections. Am. J. Trop. Med. Hyg., 1984, 33(3), 511-512.
[http://dx.doi.org/10.4269/ajtmh.1984.33.511] [PMID: 6731683]
[105]
Lateef, M.; Zargar, S.A.; Khan, A.R.; Nazir, M.; Shoukat, A. Successful treatment of niclosamide- and praziquantel-resistant beef tapeworm infection with nitazoxanide. Int. J. Infect. Dis., 2008, 12(1), 80-82.
[http://dx.doi.org/10.1016/j.ijid.2007.04.017] [PMID: 17962058]
[106]
Pérez-Molina, J.A.; Díaz-Menéndez, M.; Gallego, J.I.; Norman, F.; Monge-Maillo, B.; Ayala, A.P.; López-Vélez, R. Evaluation of nitazoxanide for the treatment of disseminated cystic echinococcosis: report of five cases and literature review. Am. J. Trop. Med. Hyg., 2011, 84(2), 351-356.
[http://dx.doi.org/10.4269/ajtmh.2011.10-0513] [PMID: 21292913]
[107]
ClinicalTrials.gov. Phase I trial evaluating the safety and pharmacokinetics of oxfendazole., https://clinicaltrials.gov/ct2/show/NCT02234570 (Accessed July 23, 2016).
[108]
Koul, P.A.; Wahid, A.; Bhat, M.H.; Wani, J.I.; Sofi, B.A. Mepacrine therapy in niclosamide resistant taeniasis. J. Assoc. Physicians India, 2000, 48(4), 402-403.
[PMID: 11273175]
[109]
Ditzel, J.; Schwartz, M. Worm cure without tears. The effect of niclosamide on taeniasis saginata in man. Acta Med. Scand., 1967, 182(5), 663-664.
[http://dx.doi.org/10.1111/j.0954-6820.1967.tb10892.x] [PMID: 6057575]
[110]
Brkić, D.; Glisić, L.; Simić, P. Yomesan in therapy of taeniasis and Hymenolepis nanae. Med. Glas., 1968, 22(4), 107-108.
[PMID: 5191741]
[111]
ClinicalTrials.gov. Auranofin PK following oral dose administration., https://clinicaltrials.gov/ct2/show/NCT02089048 (Accessed July 25, 2016).
[112]
Nightingale, S.L. From the Food and Drug Administration. JAMA, 1998, 280(10), 872.
[http://dx.doi.org/10.1001/jama.280.10.872-JFD80008-2-1] [PMID: 9739956]
[113]
Andrews, K.T.; Fisher, G.; Skinner-Adams, T.S. Drug repurposing and human parasitic protozoan diseases. Int. J. Parasitol. Drugs Drug Resist., 2014, 4(2), 95-111.
[http://dx.doi.org/10.1016/j.ijpddr.2014.02.002] [PMID: 25057459]
[114]
Bredel, M.; Jacoby, E. Chemogenomics: an emerging strategy for rapid target and drug discovery. Nat. Rev. Genet., 2004, 5(4), 262-275.
[http://dx.doi.org/10.1038/nrg1317] [PMID: 15131650]
[115]
Caron, P.R.; Mullican, M.D.; Mashal, R.D.; Wilson, K.P.; Su, M.S.; Murcko, M.A. Chemogenomic approaches to drug discovery. Curr. Opin. Chem. Biol., 2001, 5(4), 464-470.
[http://dx.doi.org/10.1016/S1367-5931(00)00229-5] [PMID: 11470611]
[116]
Mestres, J. Computational chemogenomics approaches to systematic knowledge-based drug discovery. Curr. Opin. Drug Discov. Devel., 2004, 7(3), 304-313.
[PMID: 15216933]
[117]
Rognan, D. Chemogenomic approaches to rational drug design. Br. J. Pharmacol., 2007, 152(1), 38-52.
[http://dx.doi.org/10.1038/sj.bjp.0707307] [PMID: 17533416]
[118]
Li, J.; Zheng, S.; Chen, B.; Butte, A.J.; Swamidass, S.J.; Lu, Z. A survey of current trends in computational drug repositioning. Brief. Bioinform., 2016, 17(1), 2-12.
[http://dx.doi.org/10.1093/bib/bbv020] [PMID: 25832646]
[119]
Hurle, M.R.; Yang, L.; Xie, Q.; Rajpal, D.K.; Sanseau, P.; Agarwal, P. Computational drug repositioning: from data to therapeutics. Clin. Pharmacol. Ther., 2013, 93(4), 335-341.
[http://dx.doi.org/10.1038/clpt.2013.1] [PMID: 23443757]
[120]
Wang, Y.; Xiao, J.; Suzek, T.O.; Zhang, J.; Wang, J.; Zhou, Z.; Han, L.; Karapetyan, K.; Dracheva, S.; Shoemaker, B.A.; Bolton, E.; Gindulyte, A.; Bryant, S.H. PubChem’s BioAssay database. Nucleic Acids Res., 2012, 40(Database issue), D400-D412.
[http://dx.doi.org/10.1093/nar/gkr1132] [PMID: 22140110]
[121]
Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; Overington, J.P. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res., 2012, 40(Database issue), D1100-D1107.
[http://dx.doi.org/10.1093/nar/gkr777] [PMID: 21948594]
[122]
Chen, X.; Liu, M.; Gilson, M.K.; Binding, D.B. BindingDB: a web-accessible molecular recognition database. Comb. Chem. High Throughput Screen., 2001, 4(8), 719-725.
[http://dx.doi.org/10.2174/1386207013330670] [PMID: 11812264]
[123]
Knox, C.; Law, V.; Jewison, T.; Liu, P.; Ly, S.; Frolkis, A.; Pon, A.; Banco, K.; Mak, C.; Neveu, V.; Djoumbou, Y.; Eisner, R.; Guo, A.C.; Wishart, D.S. DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res., 2011, 39(Database issue), D1035-D1041.
[http://dx.doi.org/10.1093/nar/gkq1126] [PMID: 21059682]
[124]
Wishart, D.S.; Knox, C.; Guo, A.C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res., 2006, 34(Database issue), D668-D672.
[http://dx.doi.org/10.1093/nar/gkj067] [PMID: 16381955]
[125]
Chen, X.; Ji, Z.L.; Chen, Y.Z. TTD: Therapeutic target database. Nucleic Acids Res., 2002, 30(1), 412-415.
[http://dx.doi.org/10.1093/nar/30.1.412] [PMID: 11752352]
[126]
Zhu, F.; Han, B.; Kumar, P.; Liu, X.; Ma, X.; Wei, X.; Huang, L.; Guo, Y.; Han, L.; Zheng, C.; Chen, Y. Update of TTD: Therapeutic target database. Nucleic Acids Res., 2010, 38(Database issue), D787-D791.
[http://dx.doi.org/10.1093/nar/gkp1014] [PMID: 19933260]
[127]
Neves, B.J.; Dantas, R.F.; Senger, M.R.; Valente, W.C.G.; Rezende-Neto, J. de M.; Chaves, W.T.; Kamentsky, L.; Carpenter, A.; Silva-Junior, F.P.; Andrade, C.H. The antidepressant drug paroxetine as a new lead candidate in schistosome drug discovery. MedChemComm, 2016, 7, 1176-1182.
[http://dx.doi.org/10.1039/C5MD00596E]
[128]
Neves, B.J.; Dantas, R.F.; Senger, M.R.; Melo-Filho, C.C.; Valente, W.C.G.; de Almeida, A.C.M.; Rezende-Neto, J.M.; Lima, E.F.C.; Paveley, R.; Furnham, N.; Muratov, E.; Kamentsky, L.; Carpenter, A.E.; Braga, R.C.; Silva-Junior, F.P.; Andrade, C.H. Discovery of new anti-schistosomal hits by integration of QSAR-based virtual screening and high content screening. J. Med. Chem., 2016, 59(15), 7075-7088.
[http://dx.doi.org/10.1021/acs.jmedchem.5b02038] [PMID: 27396732]
[129]
Zhang, L.; Fourches, D.; Sedykh, A.; Zhu, H.; Golbraikh, A.; Ekins, S.; Clark, J.; Connelly, M.C.; Sigal, M.; Hodges, D.; Guiguemde, A.; Guy, R.K.; Tropsha, A. Discovery of novel antimalarial compounds enabled by QSAR-based virtual screening. J. Chem. Inf. Model., 2013, 53(2), 475-492.
[http://dx.doi.org/10.1021/ci300421n] [PMID: 23252936]
[130]
Alves, V.M.; Muratov, E.; Fourches, D.; Strickland, J.; Kleinstreuer, N.; Andrade, C.H.; Tropsha, A. Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization. Toxicol. Appl. Pharmacol., 2015, 284(2), 273-280.
[http://dx.doi.org/10.1016/j.taap.2014.12.013] [PMID: 25560673]
[131]
Alves, V.M.; Muratov, E.; Fourches, D.; Strickland, J.; Kleinstreuer, N.; Andrade, C.H.; Tropsha, A. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds. Toxicol. Appl. Pharmacol., 2015, 284(2), 262-272.
[http://dx.doi.org/10.1016/j.taap.2014.12.014] [PMID: 25560674]
[132]
Braga, R.C.; Alves, V.M.; Silva, M.F.B.; Muratov, E.; Fourches, D.; Tropsha, A.; Andrade, C.H. Tuning HERG out: antitarget QSAR models for drug development. Curr. Top. Med. Chem., 2014, 14(11), 1399-1415.
[http://dx.doi.org/10.2174/1568026614666140506124442] [PMID: 24805060]
[133]
Luo, M.; Wang, X.S.; Roth, B.L.; Golbraikh, A.; Tropsha, A. Application of quantitative structure-activity relationship models of 5-HT1A receptor binding to virtual screening identifies novel and potent 5-HT1A ligands. J. Chem. Inf. Model., 2014, 54(2), 634-647.
[http://dx.doi.org/10.1021/ci400460q] [PMID: 24410373]
[134]
Melo-Filho, C.C.; Dantas, R.F.; Braga, R.C.; Neves, B.J.; Senger, M.R.; Valente, W.C.G.; Rezende-Neto, J.M.; Chaves, W.T.; Muratov, E.N.; Paveley, R.A.; Furnham, N.; Kamentsky, L.; Carpenter, A.E.; Silva-Junior, F.P.; Andrade, C.H. QSAR-driven discovery of novel chemical scaffolds active against schistosoma mansoni. J. Chem. Inf. Model., 2016, 56(7), 1357-1372.
[http://dx.doi.org/10.1021/acs.jcim.6b00055] [PMID: 27253773]
[135]
Dubus, E.; Ijjaali, I.; Barberan, O.; Petitet, F. Drug repositioning using in silico compound profiling. Future Med. Chem., 2009, 1(9), 1723-1736.
[http://dx.doi.org/10.4155/fmc.09.123] [PMID: 21425988]
[136]
Martorana, A.; Perricone, U.; Lauria, A. The repurposing of old drugs or unsuccessful lead compounds by in silico approaches: New advances and perspectives. Curr. Top. Med. Chem., 2016, 16(19), 2088-2106.
[http://dx.doi.org/10.2174/1568026616666160216153457] [PMID: 26881716]
[137]
Ekins, S.; Williams, A.J.; Krasowski, M.D.; Freundlich, J.S. In silico repositioning of approved drugs for rare and neglected diseases. Drug Discov. Today, 2011, 16(7-8), 298-310.
[http://dx.doi.org/10.1016/j.drudis.2011.02.016] [PMID: 21376136]
[138]
Achenbach, J.; Tiikkainen, P.; Franke, L.; Proschak, E. Computational tools for polypharmacology and repurposing. Future Med. Chem., 2011, 3(8), 961-968.
[http://dx.doi.org/10.4155/fmc.11.62] [PMID: 21707399]
[139]
Berenstein, A.J.; Magariños, M.P.; Chernomoretz, A.; Agüero, F. A Multilayer network approach for guiding drug repositioning in neglected diseases. PLoS Negl. Trop. Dis., 2016, 10(1)e0004300
[http://dx.doi.org/10.1371/journal.pntd.0004300] [PMID: 26735851]
[140]
Fourches, D.; Muratov, E.; Tropsha, A. Curation of chemogenomics data. Nat. Chem. Biol., 2015, 11(8), 535.
[http://dx.doi.org/10.1038/nchembio.1881] [PMID: 26196763]
[141]
Fourches, D.; Muratov, E.; Tropsha, A. Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. J. Chem. Inf. Model., 2010, 50(7), 1189-1204.
[http://dx.doi.org/10.1021/ci100176x] [PMID: 20572635]
[142]
Fourches, D.; Muratov, E.; Tropsha, A. Trust, but Verify II: A practical guide to chemogenomics data curation. J. Chem. Inf. Model., 2016, 56(7), 1243-1252.
[http://dx.doi.org/10.1021/acs.jcim.6b00129] [PMID: 27280890]
[143]
Klabunde, T. Chemogenomic approaches to drug discovery: similar receptors bind similar ligands. Br. J. Pharmacol., 2007, 152(1), 5-7.
[http://dx.doi.org/10.1038/sj.bjp.0707308] [PMID: 17533415]
[144]
Keiser, M.J.; Setola, V.; Irwin, J.J.; Laggner, C.; Abbas, A.I.; Hufeisen, S.J.; Jensen, N.H.; Kuijer, M.B.; Matos, R.C.; Tran, T.B.; Whaley, R.; Glennon, R.A.; Hert, J.; Thomas, K.L.; Edwards, D.D.; Shoichet, B.K.; Roth, B.L. Predicting new molecular targets for known drugs. Nature, 2009, 462(7270), 175-181.
[http://dx.doi.org/10.1038/nature08506] [PMID: 19881490]
[145]
Keiser, M.J.; Roth, B.L.; Armbruster, B.N.; Ernsberger, P.; Irwin, J.J.; Shoichet, B.K. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol., 2007, 25(2), 197-206.
[http://dx.doi.org/10.1038/nbt1284] [PMID: 17287757]
[146]
Muegge, I.; Mukherjee, P. An overview of molecular fingerprint similarity search in virtual screening. Expert Opin. Drug Discov., 2016, 11(2), 137-148.
[http://dx.doi.org/10.1517/17460441.2016.1117070] [PMID: 26558489]
[147]
Holliday, J.D.; Ranade, S.S.; Willett, P. A fast algorithm for selecting sets of dissimilar molecules from large chemical databases. Quant. Struct. Relationships, 1995, 14, 501-506.
[http://dx.doi.org/10.1002/qsar.19950140602]
[148]
Cereto-Massagué, A.; Ojeda, M.J.; Valls, C.; Mulero, M.; Garcia-Vallvé, S.; Pujadas, G. Molecular fingerprint similarity search in virtual screening. Methods, 2015, 71, 58-63.
[http://dx.doi.org/10.1016/j.ymeth.2014.08.005] [PMID: 25132639]
[149]
Neves, B.J.; Muratov, E.; Machado, R.B.; Andrade, C.H.; Cravo, P.V.L. Modern approaches to accelerate discovery of new antischistosomal drugs. Expert Opin. Drug Discov., 2016, 11(6), 557-567.
[http://dx.doi.org/10.1080/17460441.2016.1178230] [PMID: 27073973]
[150]
Vuorinen, A.; Schuster, D. Methods for generating and applying pharmacophore models as virtual screening filters and for bioactivity profiling. Methods, 2015, 71, 113-134.
[http://dx.doi.org/10.1016/j.ymeth.2014.10.013] [PMID: 25461773]
[151]
Caporuscio, F.; Tafi, A. Pharmacophore modelling: a forty year old approach and its modern synergies. Curr. Med. Chem., 2011, 18(17), 2543-2553.
[http://dx.doi.org/10.2174/092986711795933669] [PMID: 21568893]
[152]
Koes, D.R.; Camacho, C.J. Shape-based virtual screening with volumetric aligned molecular shapes. J. Comput. Chem., 2014, 35(25), 1824-1834.
[http://dx.doi.org/10.1002/jcc.23690] [PMID: 25049193]
[153]
Kortagere, S.; Krasowski, M.D.; Ekins, S. The importance of discerning shape in molecular pharmacology. Trends Pharmacol. Sci., 2009, 30(3), 138-147.
[http://dx.doi.org/10.1016/j.tips.2008.12.001] [PMID: 19187977]
[154]
Braga, R.C.; Andrade, C.H. Assessing the performance of 3D pharmacophore models in virtual screening: How good are they? Curr. Top. Med. Chem., 2013, 13(9), 1127-1138.
[http://dx.doi.org/10.2174/1568026611313090010] [PMID: 23651486]
[155]
Boström, J.; Greenwood, J.R.; Gottfries, J. Assessing the performance of OMEGA with respect to retrieving bioactive conformations. J. Mol. Graph. Model., 2003, 21(5), 449-462.
[http://dx.doi.org/10.1016/S1093-3263(02)00204-8] [PMID: 12543140]
[156]
Lavecchia, A. Machine-learning approaches in drug discovery: Methods and applications. Drug Discov. Today, 2015, 20(3), 318-331.
[http://dx.doi.org/10.1016/j.drudis.2014.10.012] [PMID: 25448759]
[157]
Melville, J.L.; Burke, E.K.; Hirst, J.D. Machine learning in virtual screening. Comb. Chem. High Throughput Screen., 2009, 12(4), 332-343.
[http://dx.doi.org/10.2174/138620709788167980] [PMID: 19442063]
[158]
Dobchev, D.A.; Pillai, G.G.; Karelson, M. In silico machine learning methods in drug development. Curr. Top. Med. Chem., 2014, 14(16), 1913-1922.
[http://dx.doi.org/10.2174/1568026614666140929124203] [PMID: 25262800]
[159]
Liu, Q.; Zhou, H.; Liu, L.; Chen, X.; Zhu, R.; Cao, Z. Multi-target QSAR modelling in the analysis and design of HIV-HCV co-inhibitors: an in-silico study. BMC Bioinformatics, 2011, 12, 294.
[http://dx.doi.org/10.1186/1471-2105-12-294] [PMID: 21774796]
[160]
Speck-Planche, A.; Cordeiro, M.N.D.S. Multi-target QSAR approaches for modeling protein inhibitors. Simultaneous prediction of activities against biomacromolecules present in gram-negative bacteria. Curr. Top. Med. Chem., 2015, 15(18), 1801-1813.
[http://dx.doi.org/10.2174/1568026615666150506144814] [PMID: 25961517]
[161]
Lima, A.N.; Philot, E.A.; Trossini, G.H.G.; Scott, L.P.B.; Maltarollo, V.G.; Honorio, K.M. Use of machine learning approaches for novel drug discovery. Expert Opin. Drug Discov., 2016, 11(3), 225-239.
[http://dx.doi.org/10.1517/17460441.2016.1146250] [PMID: 26814169]
[162]
Cherkasov, A.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y.C.; Todeschini, R.; Consonni, V.; Kuz’min, V.E.; Cramer, R.; Benigni, R.; Yang, C.; Rathman, J.; Terfloth, L.; Gasteiger, J.; Richard, A.; Tropsha, A. QSAR modeling: where have you been? Where are you going to? J. Med. Chem., 2014, 57(12), 4977-5010.
[http://dx.doi.org/10.1021/jm4004285] [PMID: 24351051]
[163]
Tropsha, A. Best practices for QSAR model development, validation, and exploitation. Mol. Inform., 2010, 29(6-7), 476-488.
[http://dx.doi.org/10.1002/minf.201000061] [PMID: 27463326]
[164]
Mitchell, J.B.O. Machine learning methods in chemoinformatics. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2014, 4(5), 468-481.
[http://dx.doi.org/10.1002/wcms.1183] [PMID: 25285160]
[165]
Muratov, E.N.; Artemenko, A.G.; Varlamova, E.V.; Polischuk, P.G.; Lozitsky, V.P.; Fedchuk, A.S.; Lozitska, R.L.; Gridina, T.L.; Koroleva, L.S.; Sil’nikov, V.N.; Galabov, A.S.; Makarov, V.A.; Riabova, O.B.; Wutzler, P.; Schmidtke, M.; Kuz’min, V.E. Per aspera ad astra: application of Simplex QSAR approach in antiviral research. Future Med. Chem., 2010, 2(7), 1205-1226.
[http://dx.doi.org/10.4155/fmc.10.194] [PMID: 21426164]
[166]
Chang, C.Y.; Hsu, M.T.; Esposito, E.X.; Tseng, Y.J. Oversampling to overcome overfitting: exploring the relationship between data set composition, molecular descriptors, and predictive modeling methods. J. Chem. Inf. Model., 2013, 53(4), 958-971.
[http://dx.doi.org/10.1021/ci4000536] [PMID: 23464929]
[167]
Zakharov, A.V.; Peach, M.L.; Sitzmann, M.; Nicklaus, M.C. QSAR modeling of imbalanced high-throughput screening data in PubChem. J. Chem. Inf. Model., 2014, 54(3), 705-712.
[http://dx.doi.org/10.1021/ci400737s] [PMID: 24524735]
[168]
Rose, P.W.; Prlić, A.; Bi, C.; Bluhm, W.F.; Christie, C.H.; Dutta, S.; Green, R.K.; Goodsell, D.S.; Westbrook, J.D.; Woo, J.; Young, J.; Zardecki, C.; Berman, H.M.; Bourne, P.E.; Burley, S.K. The RCSB Protein Data Bank: views of structural biology for basic and applied research and education. Nucleic Acids Res., 2015, 43(Database issue), D345-D356.
[http://dx.doi.org/10.1093/nar/gku1214] [PMID: 25428375]
[169]
Pollastri, M.P.; Campbell, R.K. Target repurposing for neglected diseases. Future Med. Chem., 2011, 3(10), 1307-1315.
[http://dx.doi.org/10.4155/fmc.11.92] [PMID: 21859304]
[170]
Finn, R.D.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Mistry, J.; Mitchell, A.L.; Potter, S.C.; Punta, M.; Qureshi, M.; Sangrador-Vegas, A.; Salazar, G.A.; Tate, J.; Bateman, A. The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Res., 2016, 44(D1), D279-D285.
[http://dx.doi.org/10.1093/nar/gkv1344] [PMID: 26673716]
[171]
Sonnhammer, E.L.; Eddy, S.R.; Durbin, R. Pfam: A comprehensive database of protein domain families based on seed alignments. Proteins, 1997, 28(3), 405-420.
[http://dx.doi.org/10.1002/(SICI)1097-0134(199707)28:3<405:AID-PROT10>3.0.CO;2-L] [PMID: 9223186]
[172]
Kristensen, D.M.; Wolf, Y.I.; Mushegian, A.R.; Koonin, E.V. Computational methods for Gene orthology inference. Brief. Bioinform., 2011, 12(5), 379-391.
[http://dx.doi.org/10.1093/bib/bbr030] [PMID: 21690100]
[173]
Wang, Y.; Coleman-Derr, D.; Chen, G.; Gu, Y.Q. OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res., 2015, 43(W1)W78-84
[http://dx.doi.org/10.1093/nar/gkv487] [PMID: 25964301]
[174]
Li, L.; Stoeckert, C.J., Jr; Roos, D.S. OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res., 2003, 13(9), 2178-2189.
[http://dx.doi.org/10.1101/gr.1224503] [PMID: 12952885]
[175]
Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res., 1997, 25(17), 3389-3402.
[http://dx.doi.org/10.1093/nar/25.17.3389] [PMID: 9254694]
[176]
Glaser, F.; Pupko, T.; Paz, I.; Bell, R.E.; Bechor-Shental, D.; Martz, E.; Ben-Tal, N. ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics, 2003, 19(1), 163-164.
[http://dx.doi.org/10.1093/bioinformatics/19.1.163] [PMID: 12499312]
[177]
Ashkenazy, H.; Erez, E.; Martz, E.; Pupko, T.; Ben-Tal, N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res, 2010, 38(Web Server issue), W529-33.
[http://dx.doi.org/10.1093/nar/gkq399] [PMID: 20478830]
[178]
Singh, S.; Malik, B.K.; Sharma, D.K. Choke point analysis of metabolic pathways in E.histolytica: A computational approach for drug target identification. Bioinformation, 2007, 2(2), 68-72.
[http://dx.doi.org/10.6026/97320630002068] [PMID: 18188424]
[179]
Taylor, C.M.; Wang, Q.; Rosa, B.A.; Huang, S.C-C.; Powell, K.; Schedl, T.; Pearce, E.J.; Abubucker, S.; Mitreva, M. Discovery of anthelmintic drug targets and drugs using chokepoints in nematode metabolic pathways. PLoS Pathog., 2013, 9(8)e1003505
[http://dx.doi.org/10.1371/journal.ppat.1003505] [PMID: 23935495]
[180]
Jomaa, H.; Wiesner, J.; Sanderbrand, S.; Altincicek, B.; Weidemeyer, C.; Hintz, M.; Türbachova, I.; Eberl, M.; Zeidler, J.; Lichtenthaler, H.K.; Soldati, D.; Beck, E. Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science, 1999, 285(5433), 1573-1576.
[http://dx.doi.org/10.1126/science.285.5433.1573] [PMID: 10477522]
[181]
Njoroge, M.; Njuguna, N.M.; Mutai, P.; Ongarora, D.S.B.; Smith, P.W.; Chibale, K. Recent approaches to chemical discovery and development against malaria and the neglected tropical diseases human African trypanosomiasis and schistosomiasis. Chem. Rev., 2014, 114(22), 11138-11163.
[http://dx.doi.org/10.1021/cr500098f] [PMID: 25014712]
[182]
Beghyn, T.B.; Charton, J.; Leroux, F.; Laconde, G.; Bourin, A.; Cos, P.; Maes, L.; Deprez, B. Drug to genome to drug: discovery of new antiplasmodial compounds. J. Med. Chem., 2011, 54(9), 3222-3240.
[http://dx.doi.org/10.1021/jm1014617] [PMID: 21504142]
[183]
Sateriale, A.; Bessoff, K.; Sarkar, I.N.; Huston, C.D. Drug repurposing: mining protozoan proteomes for targets of known bioactive compounds. J. Am. Med. Inform. Assoc., 2014, 21(2), 238-244.
[http://dx.doi.org/10.1136/amiajnl-2013-001700] [PMID: 23757409]
[184]
Ehrt, C.; Brinkjost, T.; Koch, O. Impact of binding site comparisons on medicinal chemistry and rational molecular design. J. Med. Chem., 2016, 59(9), 4121-4151.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00078] [PMID: 27046190]
[185]
Milletti, F.; Vulpetti, A. Predicting polypharmacology by binding site similarity: From kinases to the protein universe. J. Chem. Inf. Model., 2010, 50(8), 1418-1431.
[http://dx.doi.org/10.1021/ci1001263] [PMID: 20666497]
[186]
Defranchi, E.; Schalon, C.; Messa, M.; Onofri, F.; Benfenati, F.; Rognan, D. Binding of protein kinase inhibitors to synapsin I inferred from pair-wise binding site similarity measurements. PLoS One, 2010, 5(8)e12214
[http://dx.doi.org/10.1371/journal.pone.0012214] [PMID: 20808948]
[187]
Batista, J.; Hawkins, P.C.; Tolbert, R.; Geballe, M.T. SiteHopper - a unique tool for binding site comparison. J. Cheminform., 2014, 6, 57.
[http://dx.doi.org/10.1186/1758-2946-6-S1-P57]
[188]
Binkowski, T.A.; Joachimiak, A. Protein functional surfaces: global shape matching and local spatial alignments of ligand binding sites. BMC Struct. Biol., 2008, 8, 45.
[http://dx.doi.org/10.1186/1472-6807-8-45] [PMID: 18954462]
[189]
Das, S.; Kokardekar, A.; Breneman, C.M. Rapid comparison of protein binding site surfaces with property encoded shape distributions. J. Chem. Inf. Model., 2009, 49(12), 2863-2872.
[http://dx.doi.org/10.1021/ci900317x] [PMID: 19919089]
[190]
Wood, D.J.; de Vlieg, J.; Wagener, M.; Ritschel, T. Pharmacophore fingerprint-based approach to binding site subpocket similarity and its application to bioisostere replacement. J. Chem. Inf. Model., 2012, 52(8), 2031-2043.
[http://dx.doi.org/10.1021/ci3000776] [PMID: 22830492]
[191]
Najmanovich, R.; Kurbatova, N.; Thornton, J. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites. Bioinformatics, 2008, 24(16), i105-i111.
[http://dx.doi.org/10.1093/bioinformatics/btn263] [PMID: 18689810]
[192]
Schmitt, S.; Kuhn, D.; Klebe, G. A new method to detect related function among proteins independent of sequence and fold homology. J. Mol. Biol., 2002, 323(2), 387-406.
[http://dx.doi.org/10.1016/S0022-2836(02)00811-2] [PMID: 12381328]
[193]
Tu, H.; Shi, T. Ligand binding site similarity identification based on chemical and geometric similarity. Protein J., 2013, 32(5), 373-385.
[http://dx.doi.org/10.1007/s10930-013-9494-1] [PMID: 23700221]
[194]
Yeturu, K.; Chandra, N. PocketMatch: a new algorithm to compare binding sites in protein structures. BMC Bioinformatics, 2008, 9, 543.
[http://dx.doi.org/10.1186/1471-2105-9-543] [PMID: 19091072]
[195]
Totrov, M. Ligand binding site superposition and comparison based on Atomic Property Fields: identification of distant homologues, convergent evolution and PDB-wide clustering of binding sites. BMC Bioinformatics, 2011, 12(Suppl. 1), S35.
[http://dx.doi.org/10.1186/1471-2105-12-S1-S35] [PMID: 21342566]
[196]
Baroni, M.; Cruciani, G.; Sciabola, S.; Perruccio, F.; Mason, J.S. A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for Ligands and Proteins (FLAP): theory and application. J. Chem. Inf. Model., 2007, 47(2), 279-294.
[http://dx.doi.org/10.1021/ci600253e] [PMID: 17381166]
[197]
Goodford, P.J. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem., 1985, 28(7), 849-857.
[http://dx.doi.org/10.1021/jm00145a002] [PMID: 3892003]
[198]
Cerqueira, N.M.F.S.A.; Gesto, D.; Oliveira, E.F.; Santos-Martins, D.; Brás, N.F.; Sousa, S.F.; Fernandes, P.A.; Ramos, M.J. Receptor-based virtual screening protocol for drug discovery. Arch. Biochem. Biophys., 2015, 582, 56-67.
[http://dx.doi.org/10.1016/j.abb.2015.05.011] [PMID: 26045247]
[199]
Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[200]
Lionta, E.; Spyrou, G.; Vassilatis, D.K.; Cournia, Z. Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Curr. Top. Med. Chem., 2014, 14(16), 1923-1938.
[http://dx.doi.org/10.2174/1568026614666140929124445] [PMID: 25262799]
[201]
Kharkar, P.S.; Warrier, S.; Gaud, R.S. Reverse docking: a powerful tool for drug repositioning and drug rescue. Future Med. Chem., 2014, 6(3), 333-342.
[http://dx.doi.org/10.4155/fmc.13.207] [PMID: 24575968]
[202]
Braga, R.C.; Alves, V.M.; Silva, A.C.; Nascimento, M.N.; Silva, F.C.; Liao, L.M.; Andrade, C.H. Virtual screening strategies in medicinal chemistry: the state of the art and current challenges. Curr. Top. Med. Chem., 2014, 14(16), 1899-1912.
[http://dx.doi.org/10.2174/1568026614666140929120749] [PMID: 25262801]
[203]
Hou, X.; Li, K.; Yu, X.; Sun, J.P.; Fang, H. Protein flexibility in docking-based virtual screening: Discovery of novel lymphoid-specific tyrosine phosphatase inhibitors using multiple crystal structures. J. Chem. Inf. Model., 2015, 55(9), 1973-1983.
[http://dx.doi.org/10.1021/acs.jcim.5b00344] [PMID: 26360643]
[204]
Liao, C.; Sitzmann, M.; Pugliese, A.; Nicklaus, M.C. Software and resources for computational medicinal chemistry. Future Med. Chem., 2011, 3(8), 1057-1085.
[http://dx.doi.org/10.4155/fmc.11.63] [PMID: 21707404]
[205]
Zhong, S.; Zhang, Y.; Xiu, Z. Rescoring ligand docking poses. Curr. Opin. Drug Discov. Devel., 2010, 13(3), 326-334.
[PMID: 20443166]
[206]
Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D.A.; Cheatham, T.E., III Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res., 2000, 33(12), 889-897.
[http://dx.doi.org/10.1021/ar000033j] [PMID: 11123888]
[207]
Wang, J.; Morin, P.; Wang, W.; Kollman, P.A. Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J. Am. Chem. Soc., 2001, 123(22), 5221-5230.
[http://dx.doi.org/10.1021/ja003834q] [PMID: 11457384]
[208]
Lyne, P.D.; Lamb, M.L.; Saeh, J.C. Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. J. Med. Chem., 2006, 49(16), 4805-4808.
[http://dx.doi.org/10.1021/jm060522a] [PMID: 16884290]
[209]
Brown, S.P.; Muchmore, S.W. High-throughput calculation of protein-ligand binding affinities: modification and adaptation of the MM-PBSA protocol to enterprise grid computing. J. Chem. Inf. Model., 2006, 46(3), 999-1005.
[http://dx.doi.org/10.1021/ci050488t] [PMID: 16711718]
[210]
Guimarães, C.R.W.; Cardozo, M. MM-GB/SA rescoring of docking poses in structure-based lead optimization. J. Chem. Inf. Model., 2008, 48(5), 958-970.
[http://dx.doi.org/10.1021/ci800004w] [PMID: 18422307]
[211]
Magariños, M.P.; Carmona, S.J.; Crowther, G.J.; Ralph, S.A.; Roos, D.S.; Shanmugam, D.; Van Voorhis, W.C.; Agüero, F. TDR Targets: a chemogenomics resource for neglected diseases. Nucleic Acids Res., 2012, 40(Database issue), D1118-D1127.
[http://dx.doi.org/10.1093/nar/gkr1053] [PMID: 22116064]
[212]
Agüero, F.; Al-Lazikani, B.; Aslett, M.; Berriman, M.; Buckner, F.S.; Campbell, R.K.; Carmona, S.; Carruthers, I.M.; Chan, A.W.; Chen, F.; Crowther, G.J.; Doyle, M.A.; Hertz-Fowler, C.; Hopkins, A.L.; McAllister, G.; Nwaka, S.; Overington, J.P.; Pain, A.; Paolini, G.V.; Pieper, U.; Ralph, S.A.; Riechers, A.; Roos, D.S.; Sali, A.; Shanmugam, D.; Suzuki, T.; Van Voorhis, W.C.; Verlinde, C.L. Genomic-scale prioritization of drug targets: the TDR Targets database. Nat. Rev. Drug Discov., 2008, 7(11), 900-907.
[http://dx.doi.org/10.1038/nrd2684] [PMID: 18927591]
[213]
Jones, P.; Binns, D.; Chang, H-Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; Pesseat, S.; Quinn, A.F.; Sangrador-Vegas, A.; Scheremetjew, M.; Yong, S-Y.; Lopez, R.; Hunter, S. InterProScan 5: genome-scale protein function classification. Bioinformatics, 2014, 30(9), 1236-1240.
[http://dx.doi.org/10.1093/bioinformatics/btu031] [PMID: 24451626]
[214]
Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 27, 29-34.
[215]
Colley, D.G.; Bustinduy, A.L.; Secor, W.E.; King, C.H. Human schistosomiasis. Lancet, 2014, 383(9936), 2253-2264.
[http://dx.doi.org/10.1016/S0140-6736(13)61949-2] [PMID: 24698483]
[216]
Neves, B.J.; Braga, R.C.; Bezerra, J.C.B.; Cravo, P.V.L.; Andrade, C.H. In silico repositioning-chemogenomics strategy identifies new drugs with potential activity against multiple life stages of Schistosoma mansoni. PLoS Negl. Trop. Dis., 2015, 9(1)e3435
[http://dx.doi.org/10.1371/journal.pntd.0003435] [PMID: 25569258]
[217]
Protasio, A.V.; Tsai, I.J.; Babbage, A.; Nichol, S.; Hunt, M.; Aslett, M.A.; De Silva, N.; Velarde, G.S.; Anderson, T.J.; Clark, R.C.; Davidson, C.; Dillon, G.P.; Holroyd, N.E.; LoVerde, P.T.; Lloyd, C.; McQuillan, J.; Oliveira, G.; Otto, T.D.; Parker-Manuel, S.J.; Quail, M.A.; Wilson, R.A.; Zerlotini, A.; Dunne, D.W.; Berriman, M. A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLoS Negl. Trop. Dis., 2012, 6(1)e1455
[http://dx.doi.org/10.1371/journal.pntd.0001455] [PMID: 22253936]
[218]
Kuhn, M.; Szklarczyk, D.; Franceschini, A.; von Mering, C.; Jensen, L.J.; Bork, P. STITCH 3: zooming in on protein-chemical interactions. Nucleic Acids Res., 2012, 40(Database issue), D876-D880.
[http://dx.doi.org/10.1093/nar/gkr1011] [PMID: 22075997]
[219]
Kuhn, M.; von Mering, C.; Campillos, M.; Jensen, L.J.; Bork, P. STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res., 2008, 36(Database issue), D684-D688.
[PMID: 18084021]
[220]
Patocka, N.; Ribeiro, P. Characterization of a serotonin transporter in the parasitic flatworm, Schistosoma mansoni: cloning, expression and functional analysis. Mol. Biochem. Parasitol., 2007, 154(2), 125-133.
[http://dx.doi.org/10.1016/j.molbiopara.2007.03.010] [PMID: 17582522]
[221]
Fontana, A.C.K.; Sonders, M.S.; Pereira-Junior, O.S.; Knight, M.; Javitch, J.A.; Rodrigues, V.; Amara, S.G.; Mortensen, O.V. Two allelic isoforms of the serotonin transporter from Schistosoma mansoni display electrogenic transport and high selectivity for serotonin. Eur. J. Pharmacol., 2009, 616(1-3), 48-57.
[http://dx.doi.org/10.1016/j.ejphar.2009.06.023] [PMID: 19549517]
[222]
Mansour, T.E. Serotonin receptors in parasitic worms. Adv. Parasitol., 1984, 23, 1-36.
[PMID: 6152376]
[223]
Rahman, M.S.; Mettrick, D.F.; Podesta, R.B. Schistosoma mansoni: Effects of in vitro serotonin (5-HT) on aerobic and anaerobic carbohydrate metabolism. Exp. Parasitol., 1985, 60(1), 10-17.
[http://dx.doi.org/10.1016/S0014-4894(85)80018-7] [PMID: 4018216]
[224]
Boyle, J.P.; Zaide, J.V.; Yoshino, T.P. Schistosoma mansoni: effects of serotonin and serotonin receptor antagonists on motility and length of primary sporocysts in vitro. Exp. Parasitol., 2000, 94(4), 217-226.
[http://dx.doi.org/10.1006/expr.2000.4500] [PMID: 10831389]
[225]
Boyle, J.P.; Yoshino, T.P. Serotonin-induced muscular activity in Schistosoma mansoni larval stages: importance of 5-HT transport and role in daughter sporocyst production. J. Parasitol., 2005, 91(3), 542-550.
[http://dx.doi.org/10.1645/GE-432R] [PMID: 16108544]
[226]
Hotez, P.J.; Molyneux, D.H.; Fenwick, A.; Kumaresan, J.; Sachs, S.E.; Sachs, J.D.; Savioli, L. Control of neglected tropical diseases. N. Engl. J. Med., 2007, 357(10), 1018-1027.
[http://dx.doi.org/10.1056/NEJMra064142] [PMID: 17804846]
[227]
Croft, S.L.; Barrett, M.P.; Urbina, J.A. Chemotherapy of trypanosomiases and leishmaniasis. Trends Parasitol., 2005, 21(11), 508-512.
[http://dx.doi.org/10.1016/j.pt.2005.08.026] [PMID: 16150644]
[228]
Bland, N.D.; Wang, C.; Tallman, C.; Gustafson, A.E.; Wang, Z.; Ashton, T.D.; Ochiana, S.O.; McAllister, G.; Cotter, K.; Fang, A.P.; Gechijian, L.; Garceau, N.; Gangurde, R.; Ortenberg, R.; Ondrechen, M.J.; Campbell, R.K.; Pollastri, M.P. Pharmacological validation of Trypanosoma brucei phosphodiesterases B1 and B2 as druggable targets for African sleeping sickness. J. Med. Chem., 2011, 54(23), 8188-8194.
[http://dx.doi.org/10.1021/jm201148s] [PMID: 22023548]
[229]
Wang, Q.; Rosa, B.A.; Nare, B.; Powell, K.; Valente, S.; Rotili, D.; Mai, A.; Marshall, G.R.; Mitreva, M. Targeting Lysine Deacetylases (KDACs) in parasites. PLoS Negl. Trop. Dis., 2015, 9(9)e0004026
[http://dx.doi.org/10.1371/journal.pntd.0004026] [PMID: 26402733]
[230]
Kobets, T.; Grekov, I.; Lipoldova, M. Leishmaniasis: prevention, parasite detection and treatment. Curr. Med. Chem., 2012, 19(10), 1443-1474.
[http://dx.doi.org/10.2174/092986712799828300] [PMID: 22360481]
[231]
WHO. Control of the Leishmaniases In: WHO Expert Committee on the Control of Leishmaniases;; Geneva, 2010; pp. 1-186.
[232]
Freitas-Junior, L.H.; Chatelain, E.; Kim, H.A.; Siqueira-Neto, J.L. Visceral leishmaniasis treatment: What do we have, what do we need and how to deliver it? Int. J. Parasitol. Drugs Drug Resist., 2012, 2, 11-19.
[http://dx.doi.org/10.1016/j.ijpddr.2012.01.003] [PMID: 24533267]
[233]
Chavali, A.K.; Whittemore, J.D.; Eddy, J.A.; Williams, K.T.; Papin, J.A. Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major. Mol. Syst. Biol., 2008, 4, 177.
[http://dx.doi.org/10.1038/msb.2008.15] [PMID: 18364711]
[234]
Chavali, A.K.; Blazier, A.S.; Tlaxca, J.L.; Jensen, P.A.; Pearson, R.D.; Papin, J.A. Metabolic network analysis predicts efficacy of FDA-approved drugs targeting the causative agent of a neglected tropical disease. BMC Syst. Biol., 2012, 6, 27.
[http://dx.doi.org/10.1186/1752-0509-6-27] [PMID: 22540944]
[235]
Logan-Klumpler, F.J.; De Silva, N.; Boehme, U.; Rogers, M.B.; Velarde, G.; McQuillan, J.A.; Carver, T.; Aslett, M.; Olsen, C.; Subramanian, S.; Phan, I.; Farris, C.; Mitra, S.; Ramasamy, G.; Wang, H.; Tivey, A.; Jackson, A.; Houston, R.; Parkhill, J.; Holden, M.; Harb, O.S.; Brunk, B.P.; Myler, P.J.; Roos, D.; Carrington, M.; Smith, D.F.; Hertz-Fowler, C.; Berriman, M. GeneDB--an annotation database for pathogens. Nucleic Acids Res., 2012, 40(Database issue), D98-D108.
[http://dx.doi.org/10.1093/nar/gkr1032] [PMID: 22116062]
[236]
Chen, X.; Ji, Z.L.; Chen, Y.Z. TTD: Therapeutic target database. Nucleic Acids Res., 2002, 30(1), 412-415.
[http://dx.doi.org/10.1093/nar/30.1.412] [PMID: 11752352]
[237]
Cibulskis, R.E.; Alonso, P.; Aponte, J.; Aregawi, M.; Barrette, A.; Bergeron, L.; Fergus, C.A.; Knox, T.; Lynch, M.; Patouillard, E.; Schwarte, S.; Stewart, S.; Williams, R. Malaria: Global progress 2000 - 2015 and future challenges. Infect. Dis. Poverty, 2016, 5(1), 61.
[http://dx.doi.org/10.1186/s40249-016-0151-8] [PMID: 27282148]
[238]
Tilley, L.; Straimer, J.; Gnädig, N.F.; Ralph, S.A.; Fidock, D.A. Artemisinin action and resistance in plasmodium falciparum. Trends Parasitol., 2016, 32(9), 682-696.
[http://dx.doi.org/10.1016/j.pt.2016.05.010] [PMID: 27289273]
[239]
Woodrow, C.J.; Krishna, S. Antimalarial drugs: recent advances in molecular determinants of resistance and their clinical significance. Cell. Mol. Life Sci., 2006, 63(14), 1586-1596.
[http://dx.doi.org/10.1007/s00018-006-6071-1] [PMID: 16699808]
[240]
Le Bras, J.; Durand, R. The mechanisms of resistance to antimalarial drugs in Plasmodium falciparum. Fundam. Clin. Pharmacol., 2003, 17(2), 147-153.
[http://dx.doi.org/10.1046/j.1472-8206.2003.00164.x] [PMID: 12667224]
[241]
Wilson, R.J.; Williamson, D.H.; Preiser, P. Malaria and other Apicomplexans: the “plant” connection. Infect. Agents Dis., 1994, 3(1), 29-37.
[PMID: 7952925]
[242]
McFadden, G.I.; Reith, M.E.; Munholland, J.; Lang-Unnasch, N. Plastid in human parasites. Nature, 1996, 381(6582), 482-482.
[http://dx.doi.org/10.1038/381482a0] [PMID: 8632819]
[243]
Moore, R.B.; Oborník, M.; Janouškovec, J.; Chrudimský, T.; Vancová, M.; Green, D.H.; Wright, S.W.; Davies, N.W.; Bolch, C.J.S.; Heimann, K.; Šlapeta, J.; Hoegh-Guldberg, O.; Logsdon, J.M.; Carter, D.A. A photosynthetic alveolate closely related to apicomplexan parasites. Nature, 2008, 451(7181), 959-963.
[http://dx.doi.org/10.1038/nature06635] [PMID: 18288187]
[244]
Ralph, S.A.; van Dooren, G.G.; Waller, R.F.; Crawford, M.J.; Fraunholz, M.J.; Foth, B.J.; Tonkin, C.J.; Roos, D.S.; McFadden, G.I. Tropical infectious diseases: Metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat. Rev. Microbiol., 2004, 2(3), 203-216.
[http://dx.doi.org/10.1038/nrmicro843] [PMID: 15083156]
[245]
Budimulja, A.S. Syafruddin; Tapchaisri, P.; Wilairat, P.; Marzuki, S. The sensitivity of Plasmodium protein synthesis to prokaryotic ribosomal inhibitors. Mol. Biochem. Parasitol., 1997, 84(1), 137-141.
[http://dx.doi.org/10.1016/S0166-6851(96)02781-8] [PMID: 9041529]
[246]
Yeh, E.; DeRisi, J.L. Chemical rescue of malaria parasites lacking an apicoplast defines organelle function in blood-stage Plasmodium falciparum. PLoS Biol., 2011, 9(8)e1001138
[http://dx.doi.org/10.1371/journal.pbio.1001138] [PMID: 21912516]
[247]
Lalloo, D.G.; Shingadia, D.; Pasvol, G.; Chiodini, P.L.; Whitty, C.J.; Beeching, N.J.; Hill, D.R.; Warrell, D.A.; Bannister, B.A. HPA Advisory Committee on Malaria Prevention in UK Travellers. UK malaria treatment guidelines. J. Infect., 2007, 54(2), 111-121.
[http://dx.doi.org/10.1016/j.jinf.2006.12.003] [PMID: 17215045]
[248]
Chakraborty, A. Understanding the biology of the Plasmodium falciparum apicoplast; an excellent target for antimalarial drug development. Life Sci., 2016, 158, 104-110.
[http://dx.doi.org/10.1016/j.lfs.2016.06.030] [PMID: 27381078]
[249]
Bispo, N.A.; Culleton, R.; Silva, L.A.; Cravo, P. A systematic in silico search for target similarity identifies several approved drugs with potential activity against the Plasmodium falciparum apicoplast. PLoS One, 2013, 8(3)e59288
[http://dx.doi.org/10.1371/journal.pone.0059288] [PMID: 23555651]
[250]
Kundu, C.N.; Das, S.; Nayak, A.; Satapathy, S.R.; Das, D.; Siddharth, S. Anti-malarials are anti-cancers and vice versa - one arrow two sparrows. Acta Trop., 2015, 149, 113-127.
[http://dx.doi.org/10.1016/j.actatropica.2015.03.028] [PMID: 25963804]
[251]
Bahl, A.; Brunk, B.; Crabtree, J.; Fraunholz, M.J.; Gajria, B.; Grant, G.R.; Ginsburg, H.; Gupta, D.; Kissinger, J.C.; Labo, P.; Li, L.; Mailman, M.D.; Milgram, A.J.; Pearson, D.S.; Roos, D.S.; Schug, J.; Stoeckert, C.J., Jr; Whetzel, P. PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data. Nucleic Acids Res., 2003, 31(1), 212-215.
[http://dx.doi.org/10.1093/nar/gkg081] [PMID: 12519984]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy