[1]
Onuchic JN, Wolynes PG. Theory of protein folding. Curr Opin Struct Biol 2004; 14(1): 70-5.
[2]
Grinter S, Zou X. Challenges, applications, and recent advances of protein-ligand docking in structure-based drug design. Molecules 2014; 19(7): 10150.
[3]
Lee D, Redfern O, Orengo C. Predicting protein function from sequence and structure. Nat Rev Mol Cell Biol 2007; 8(12): 995-1005.
[4]
Pollastri G, McLysaght A. Porter: A new, accurate server for protein secondary structure prediction. Bioinformatics 2005; 21(8): 1719-20.
[5]
Yoo PD, Zhou BB, Zomaya AY. Machine learning techniques for protein secondary structure prediction: An overview and evaluation. Curr Bioinform 2008; 3(2): 74-86.
[6]
Faraggi E, Zhang T, Yang Y, Kurgan L, Zhou Y. SPINE X: improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles. J Comput Chem 2012; 33(3): 259-67.
[7]
Pauling L, Corey RB, Branson HR. The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci 1951; 37(4): 205-11.
[8]
Joseph AP, de Brevern AG. From local structure to a global framework: recognition of protein folds. Interface Focus 2014; 11(95): 20131147.
[9]
Singh M. Predicting protein secondary and supersecondary structureHandbook of Computational Molecular Biology: Chapman and Hall/CRC; 2005 p 29-1 to 29-23.
[10]
Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen‐bonded and geometrical features. Biopolymers 1983; 22(12): 2577-637.
[11]
Yaseen A, Li YH. Template-based C8-SCORPION: A protein 8-state secondary structure prediction method using structural information and context-based features. BMC Bioinformatics 2014; 15(Suppl. 8): S3.
[12]
Chou PY, Fasman GD. Conformational parameters for amino acids in helical, β-sheet, and random coil regions calculated from proteins. Biochemistry 1974; 13(2): 211-22.
[13]
Garnier J, Osguthorpe DJ, Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 1978; 120(1): 97-120.
[14]
Lim V. Structural principles of the globular organization of protein chains. A stereochemical theory of globular protein secondary structure. J Mol Biol 1974; 88(4): 857IN9863-862872.
[15]
Garnier J, Gibrat J-F, Robson B. GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol 1996; 266: 540-53.
[16]
Zemla A, Venclovas Č, Fidelis K, Rost B. A modified definition of Sov, a segment‐based measure for protein secondary structure prediction assessment. Proteins: Struct Funct Bioinf 1999; 34(2): 220-3.
[17]
Yaseen A, Li Y. Context-based features enhance protein secondary structure prediction accuracy. J Chem Inf Model 2014; 54(3): 992-1002.
[18]
Muto T, Tsuchiya D, Morikawa K, Jingami H. Structures of the extracellular regions of the group II/III metabotropic glutamate receptors. Proc Natl Acad Sci 2007; 104(10): 3759-64.
[19]
Wu H, Wang C, Gregory KJ, et al. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 2014; 344(6179): 58-64.
[20]
Das S, Orengo CA. Protein function annotation using protein domain family resources. Methods 2016; 93: 24-34.
[21]
Friesner RA, Abel R, Goldfeld DA, Miller EB, Murrett CS. Computational methods for high resolution prediction and refinement of protein structures. Curr Opin Struct Biol 2013; 23(2): 177-84.
[22]
Schmidt T, Bergner A, Schwede T. Modelling three-dimensional protein structures for applications in drug design. Drug Discov Today 2014; 19(7): 890-7.
[23]
Pasotti L, Zucca S. Advances and computational tools towards predictable design in biological engineering. Comput Math Methods Med 2014; 2014: 369681.
[24]
Szilagyi A, Zhang Y. Template-based structure modeling of protein–protein interactions. Curr Opin Struct Biol 2014; 24: 10-23.
[25]
Dorn M, Silva MB, Buriol LS, Lamb LC. Three-dimensional protein structure prediction: Methods and computational strategies. . Comput Biol Chem 2014; 53: 251-76.
[26]
Grant MJ, Booth A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Info Libr J 2009; 26(2): 91-108.
[27]
Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med 2009; 6(7): e1000097.
[28]
Pathak Y, Rana PS, Singh PK, Saraswat M. Protein structure prediction (RMSD <= 5 angstrom) using machine learning models. Int J Data Min Bioinform 2016; 14(1): 71-85.
[29]
Kang Y, Fortmann CM. An alternative approach to protein folding. BioMed Res Int 2013; 2013: 583045.
[30]
Islam MN, Iqbal S, Katebi AR, Hogue MT. A balanced secondary structure predictor. J Theor Biol 2016; 389: 60-71.
[31]
Elbashir MK, Sheng Y, Wang JX, Wu FX, Li M. Predicting beta-turns in protein using kernel logistic regression. BioMed Res Int 2013; 2013: 870372.
[32]
Belushkin AA, Vinogradov DV, Gelfand MS, Osterman AL, Cieplak P, Kazanov MD. Sequence-derived structural features driving proteolytic processing. Proteomics 2014; 14(1): 42-50.
[33]
McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics 2000; 16(4): 404-5.
[34]
Jones D. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999; 292: 195-202.
[35]
Waespy M, Gbem TT, Elenschneider L, et al. Carbohydrate recognition specificity of trans-sialidase lectin domain from trypanosoma congolense. PLoS Negl Trop Dis 2015; 9(10): e0004120.
[36]
van den Boom J, Trusch F, Hoppstock L, Beuck C, Bayer P. Structural characterization of the loop at the alpha-subunit C-terminus of the mixed lineage leukemia protein activating protease taspase1. PLoS One 2016; 11(3): e0151431.
[37]
Schaller A, Connors NK, Oelmeier SA, Hubbuch J, Middelberg APJ. Predicting recombinant protein expression experiments using molecular dynamics simulation. Chem Eng Sci 2015; 121: 340-50.
[38]
Krieger E, Vriend G. YASARA View-molecular graphics for all devices-from smartphones to workstations. Bioinformatics 2014; 30(20): 2981-2.
[39]
Buchan DWA, Minneci F, Nugent TCO, Bryson K, Jones DT. Scalable web services for the PSIPRED Protein Analysis Workbench Nucleic Acids Res 2013; 41(Web Server issue): W349- W57
[40]
Rost B, Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 1993; 232(2): 584-99.
[41]
Cuff JA, Barton GJ. Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins: Struct Funct Bioinf 2000; 40(3): 502-11.
[42]
Drozdetskiy A, Cole C, Procter J, Barton GJ. JPred4: A protein secondary structure prediction server. Nucleic Acids Res 2015; 43(W1): W389-94.
[43]
Schneider R. Sekundärstrukturvorhersage Von Proteinen unter Berücksichtigung von TertiärstrukturaspektenDepartment of Biology, Univ Heidelberg, FRG, Diploma thesis 1989.
[44]
Rost B, Sander C, Schneider R. PHD-an automatic mail server for protein secondary structure prediction. Computer applications in the biosciences. CABIOS 1994; 10(1): 53-60.
[45]
Rost B. How to use protein 1-D structure predicted by PROFphd. The proteomics protocols handbook. 2005:875-901.
[46]
Rost B, Liu J. The predictprotein server. Nucleic Acids Res 2003; 31(13): 3300-4.
[47]
Hobbs JR, Munger SD, Conn GL. Monellin (MNEI) at 1.15 Å resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63(3): 162-7.
[48]
Ulrich A, Wahl MC. Structure and evolution of the spliceosomal peptidyl-prolyl cis-trans isomerase Cwc27. Acta Crystallogr Sect D 2014; 70(Pt 12): 3110-23.
[49]
Saravanan KM, Selvaraj S. Performance of secondary structure prediction methods on proteins containing structurally ambivalent sequence fragments. Biopolymers 2013; 100(2): 148-53.
[50]
Li H, Yang B, Xie Y, Qian W. A new FCM classifier model based on KDTICM. J Inf Comput Sci 2013; 10(9): 2601-9.
[51]
Pollastri G, Martin AJ, Mooney C, Vullo A. Accurate prediction of protein secondary structure and solvent accessibility by consensus combiners of sequence and structure information. BMC Bioinformatics 2007; 8(1): 201.
[52]
Baú D, Martin AJM, Mooney C, Vullo A, Walsh I, Pollastri G. Distill: A suite of web servers for the prediction of one-, two- and three-dimensional structural features of proteins. BMC Bioinformatics 2006; 7: 402.
[53]
Faraggi E, Yang Y, Zhang S, Zhou Y. Predicting continuous local structure and the effect of its substitution for secondary structure in fragment-free protein structure prediction. Structure 2009; 17(11): 1515-27.
[54]
Zhang T, Faraggi E, Zhou Y. Fluctuations of backbone torsion angles obtained from NMR‐determined structures and their prediction. Proteins: Struct Funct Bioinf 2010; 78(16): 3353-62.
[55]
Heffernan R, Dehzangi A, Lyons J, et al. Highly accurate sequence-based prediction of half-sphere exposures of amino acid residues in proteins. Bioinformatics 2016; 32(6): 843-9.
[56]
Heffernan R, Paliwal K, Lyons J, et al. Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning. Sci Rep 2015; 5: 11476.
[57]
Gao J, Yang Y, Zhou Y. Predicting the errors of predicted local backbone angles and non-local solvent-accessibilities of proteins by deep neural networks. Bioinformatics 2016; 32(24): 3768-73.
[58]
Faraggi E, Zhang T, Yang Y, Kurgan L, Zhou Y. SPINE X: Improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles. J Comput Chem 2012; 33(3): 259-67.
[59]
Pollastri G, Przybylski D, Rost B, Baldi P. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins 2002; 47: 228-35.
[60]
Meena LS, Meena J. Cloning and characterization of a novel PE_PGRS60 protein (Rv3652) of Mycobacterium tuberculosis H37 Rv exhibit fibronectin-binding property. Biotechnol Appl Biochem 2016; 63(4): 525-31.
[61]
Kieslich CA, Smadbeck J, Khoury GA, Floudas CA. conSSert: Consensus SVM model for accurate prediction of ordered secondary structure. J Chem Inf Model 2016; 56(3): 455-61.
[62]
Cheng J, Randall AZ, Sweredoski MJ, Baldi P. SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res 2005; 33(Suppl. 2): W72-6.
[63]
Magnan CN, Baldi P. SSpro/ACCpro 5: Almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity. Bioinformatics 2014; 30(18): 2592-7.
[64]
Abarca F, Gutierrez-Maldonado SE, Parada P, Martinez P, Maass A, Perez-Acle T. Insights on the structure and stability of Licanantase: A trimeric acid-stable coiled-coil lipoprotein from Acidithiobacillus thiooxidans. PeerJ 2014; 2: e457.
[65]
Combet C, Blanchet C, Geourjon C, Deleage G. NPS@: network protein sequence analysis. Elsevier Current Trends 2000.
[66]
Geourjon C, Deleage G. SOPM: A self-optimized method for protein secondary structure prediction. Protein Eng 1994; 7(2): 157-64.
[67]
Geourjon C, Deleage G. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 1995; 11(6): 681-4.
[68]
Guermeur Y, Geourjon C, Gallinari P. Improved performance in protein secondary structure prediction by inhomogeneous score combination. Bioinformatics 1999; 15(5): 413-21.
[69]
Deleage G, Roux B. An algorithm for protein secondary structure prediction based on class prediction. Protein Eng 1987; 1(4): 289-94.
[70]
Levin JM, Robson B, Garnier J. An algorithm for secondary structure determination in proteins based on sequence similarity. FEBS Lett 1986; 205(2): 303-8.
[71]
Guermeur Y. Combinaison de classifieurs statistiques, application à la prédiction de la structure secondaire des protéinesPhD Thesis, Université de Paris, 1997.
[72]
Mugilan A, Ajitha MC, Thinagar D. In silico Secondary Structure Prediction Method (Kalasalingam University Structure Prediction Method) using Comparative Analysis. Trends in Bioinformatics 2010; 3: 11-9.
[73]
Frishman D, Argos P. Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence. Protein Eng 1996; 9(2): 133-42.
[74]
Frishman D, Argos P. Seventy-five percent accuracy in protein secondary structure prediction. Proteins: Struct Funct Bioinf 1997; 27(3): 329-35.
[75]
Gibrat J-F, Garnier J, Robson B. Further developments of protein secondary structure prediction using information theory: New parameters and consideration of residue pairs. J Mol Biol 1987; 198(3): 425-43.
[76]
Garnier J. GOR secondary structure prediction method version IVMeth Enzym, RF Doolittle Ed 1998; 266: 540-53.
[77]
Sen TZ, Jernigan RL, Garnier J, Kloczkowski A. GOR V server for protein secondary structure prediction. Bioinformatics 2005; 21(11): 2787-8.
[78]
Kouza M, Faraggi E, Kolinski A, Kloczkowski A. The GOR method of protein secondary structure prediction and its application as a protein aggregation prediction tool. Methods Mol Biol 2017; 1484: 7-24.
[79]
King RD, Sternberg MJ. Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Sci 1996; 5(11): 2298-310.
[80]
Lin K, Simossis VA, Taylor WR, Heringa J. A simple and fast secondary structure prediction method using hidden neural networks. Bioinformatics 2005; 21(2): 152-9.
[81]
Petersen B, Petersen TN, Andersen P, Nielsen M, Lundegaard C. A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Struct Biol 2009; 9(1): 51.
[82]
Yan R, Xu D, Yang J, Walker S, Zhang Y. A comparative assessment and analysis of 20 representative sequence alignment methods for protein structure prediction. Sci Rep 2013; 3: 2619.
[83]
Raghava G. APSSP2: A combination method for protein secondary structure prediction based on neural network and example based learning CASP5 2002; A-132
[84]
Wang S, Li W, Liu S, Xu J. RaptorX-Property: A web server for protein structure property prediction Nucleic Acids Res 2016; 44(Web Server issue): W430-W5
[85]
Wang ZY, Zhao F, Peng J, Xu JB. Protein 8-class secondary structure prediction using conditional neural fields. Proteomics 2011; 11(19): 3786-92.
[86]
Wang S, Peng J, Ma J, Xu J. Protein secondary structure prediction using deep convolutional neural fields. Sci Rep 2016; 6: 18962.
[87]
Yang Y, Gao J, Wang J, et al. Sixty-five years of the long march in protein secondary structure prediction: the final stretch? Brief Bioinform 2016; bbw129.
[88]
Yaseen A, Li Y. Template-based C8-SCORPION: A protein 8-state secondary structure prediction method using structural information and context-based features. BMC Bioinformatics 2014; 15(8): S3.
[89]
Montgomerie S, Sundararaj S, Gallin WJ, Wishart DS. Improving the accuracy of protein secondary structure prediction using structural alignment. BMC Bioinformatics 2006; 7: 301.
[90]
Montgomerie S, Cruz JA, Shrivastava S, Arndt D, Berjanskii M, Wishart DS. PROTEUS2: A web server for comprehensive protein structure prediction and structure-based annotation. Nucleic Acids Res 2008; 36(Suppl. 2): W202-9.
[91]
Adamczak R, Porollo A, Meller J. Combining prediction of secondary structure and solvent accessibility in proteins. Proteins: Struct Funct Bioinf 2005; 59(3): 467-75.
[92]
Leman JK, Mueller R, Karakas M, Woetzel N, Meiler J. Simultaneous prediction of protein secondary structure and transmembrane spans. Proteins: Struct Funct Bioinf 2013; 81(7): 1127-40.
[93]
Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999; 292(2): 195-202.
[94]
Green JR, Korenberg MJ. editors.Nonlinear System Identification Provides Insight Into Protein Folding. Electrical and Computer Engineering, 2006 CCECE'06 Canadian Conference on; 2006: IEEE.
[95]
Green JR, Korenberg MJ, Aboul-Magd MO. PCI-SS: MISO dynamic nonlinear protein secondary structure prediction. BMC Bioinformatics 2009; 10(1): 222.
[96]
Linnert M, Lin YJ, Manns A, et al. The FKBP-type domain of the human aryl hydrocarbon receptor-interacting protein reveals an unusual Hsp90 interaction. Biochemistry 2013; 52(12): 2097-107.
[97]
Karplus K. SAM-T08, HMM-based protein structure prediction. Nucleic Acids Res 2009; 37(suppl_2): W492-W7.
[98]
Montgomerie S, Sundararaj S, Gallin WJ, Wishart DS. Improving the accuracy of protein secondary structure prediction using structural alignment. BMC Bioinformatics 2006; 7(1): 301.
[99]
Pohane AA, Patidar ND, Jain V. Modulation of domain-domain interaction and protein function by a charged linker: A case study of mycobacteriophage D29 endolysin. FEBS Lett 2015; 589(6): 695-701.
[100]
Kang JW, Lee NY, Cho KC, et al. Analysis of nitrated proteins in Saccharomyces cerevisiae involved in mating signal transduction. Proteomics 2015; 15(2-3): 580-90.
[101]
Hauf W, Watzer B, Roos N, Klotz A, Forchhammer K. Photoautotrophic polyhydroxybutyrate granule formation is regulated by cyanobacterial phasin PhaP in Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 2015; 81(13): 4411-22.
[102]
Frades I, Resjo S, Andreasson E. Comparison of phosphorylation patterns across eukaryotes by discriminative N-gram analysis. BMC Bioinformatics 2015; 16: 239.
[103]
Espinoza-Fonseca LM, Kelekar A. High-resolution structural characterization of Noxa, an intrinsically disordered protein, by microsecond molecular dynamics simulations. Mol Biosyst 2015; 11(7): 1850-6.
[104]
Dong SS, Abrol R, Goddard WA. The predicted ensemble of low-energy conformations of human somatostatin receptor subtype 5 and the binding of antagonists. ChemMedChem 2015; 10(4): 650-61.
[105]
Dahlstrom KM, Salminen TA. 3D model for Cancerous Inhibitor of Protein Phosphatase 2A armadillo domain unveils highly conserved protein-protein interaction characteristics. J Theor Biol 2015; 386: 78-88.
[106]
Balasco N, Barone D, Vitagliano L. Structural conversion of the transformer protein RfaH: New insights derived from protein structure prediction and molecular dynamics simulations. J Biomol Struct Dyn 2015; 33(10): 2173-9.
[107]
Wu HY, Cheng YS. Combining secondary-structure and protein solvent-accessibility predictions in methionine substitution for anomalous dispersion. Acta Crystallogr Sect F Struct Biol Cryst Commun 2014; 70: 378-83.
[108]
Fu X, Chang Z, Shi X, Bu D, Wang C. Multilevel structural characteristics for the natural substrate proteins of bacterial small heat shock proteins. Protein Sci 2014; 23(2): 229-37.
[109]
Oates ME, Romero P, Ishida T, et al. (DP2)-P-2: database of disordered protein predictions. Nucleic Acids Res 2013; 41(D1): D508-16.
[110]
Lin YC, Chen BM, Lu WC, et al. The B7-1 Cytoplasmic tail enhances intracellular transport and mammalian cell surface display of chimeric proteins in the absence of a linear ER export motif. PLoS One 2013; 8(9): e75084.
[111]
Klein SL, Neilson KM, Orban J, et al. Conserved structural domains in FoxD4L1, a neural forkhead box transcription factor, are required to repress or activate target genes. PLoS One 2013; 8(4): e61845.
[112]
Fleming JR, Morgan RE, Fyfe PK, Kelly SM, Hunter WN. The architecture of Trypanosoma brucei tubulin-binding cofactor B and implications for function. FEBS J 2013; 280(14): 3270-80.
[113]
Ahn KH, Scott CE, Abrol R, Goddard WA, Kendall DA. Computationally-predicted CB1 cannabinoid receptor mutants show distinct patterns of salt-bridges that correlate with their level of constitutive activity reflected in G protein coupling levels, thermal stability, and ligand binding. Proteins: Struct Funct Bioinf 2013; 81(8): 1304-17.
[114]
Tarhda Z, Semlali O, Kettani A, Moussa A, Abumrad NA, Ibrahimi A. Three dimensional structure prediction of fatty acid binding site on human transmembrane receptor CD36. Bioinform Biol Insights 2013; 7: 369-73.
[115]
Kim JH, Kim SK, Lee JH, Kim YJ, Goddard WA, Kim YC. Homology modeling and molecular docking studies of Drosophila and Aedes sex peptide receptors. J Mol Graph Model 2016; 66: 115-22.
[116]
Ray S, Sinha J. In silico structure analysis of potassium channel bgk toxin and its docking prediction with human voltage gated potassium (Kv) channel. J Chem Pharm Res 2015; 7(5): 451-9.
[117]
Awad W, Adamczyk B, Ornros J, Karlsson NG, Mani K, Logan DT. Structural aspects of N-glycosylations and the C-terminal Region in human glypican-1. J Biol Chem 2015; 290(38): 22991-3008.
[118]
Wang S, Peng J, Ma J, Xu J. Protein secondary structure prediction using deep convolutional neural fields. Sci Rep 2016; 6: 18962.
[119]
Yan R, Wang X, Huang L, Yan F, Xue X, Cai W. Prediction of structural features and application to outer membrane protein identification. Sci Rep 2015; 5: 11586.
[120]
Keller RCA. The role and significance of potential lipid-binding regions in the mitochondrial protein import motor: An in-depth in silico study. 3 Biotech 2015; 5(6): 1041-51.
[121]
Feng YG, Luo LF. Using long-range contact number information for protein secondary structure prediction. Int J Biomath 2014; 7(5): 1450052.
[122]
Leman JK, Mueller R, Karakas M, Woetzel N, Meiler J. Simultaneous prediction of protein secondary structure and transmembrane spans. Proteins: Struct., Funct. Bioinf 2013; 81(7): 1127-40.
[123]
Wang S, Li W, Liu SW, Xu JB. RaptorX-Property: A web server for protein structure property prediction. Nucleic Acids Res 2016; 44(W1): W430-5.
[124]
Yaseen A, Li YH. Context-based features enhance protein secondary structure prediction accuracy. J Chem Inf Model 2014; 54(3): 992-1002.
[125]
Zhang SL. Accurate prediction of protein structural classes by incorporating PSSS and PSSM into Chou’s general PseAAC. Chemom Intell Lab Syst 2015; 142: 28-35.
[126]
Zhang J, Chen WH, Sun PP, Zhao XW, Ma ZQ. Prediction of protein solvent accessibility using PSO-SVR with multiple sequence-derived features and weighted sliding window scheme. BioData Min 2015; 8: 3.
[127]
Yu DJ, Hu J, Li QM, Tang ZM, Yang JY, Shen HB. Constructing query-driven dynamic machine learning model with application to protein-ligand binding sites prediction. IEEE Trans Nanobioscience 2015; 14(1): 45-58.
[128]
Yu DJ, Li Y, Hu J, Yang XB, Yang JY, Shen HB. Disulfide connectivity prediction based on modelled protein 3D structural information and random forest regression. IEEE/ACM Trans Comput Biol Bioinform 2015; 12(3): 611-21.
[129]
Xiao F, Shen HB. Prediction enhancement of residue real-value relative accessible surface area in transmembrane helical proteins by solving the output preference problem of machine learning-based predictors. J Chem Inf Model 2015; 55(11): 2464-74.
[130]
Heinze S, Putnam DK, Fischer AW, Kohlmann T, Weiner BE, Meiler J. CASP10-BCL: Fold efficiently samples topologies of large proteins. Proteins: Struct Funct Bioinf 2015; 83(3): 547-63.
[131]
de Oliveira SHP, Shi JY, Deane CM. Building a better fragment library for de novo protein structure prediction. PLoS One 2015; 10(4): e0123998.
[132]
Zhang LC, Zhao XQ, Kong L. A protein structural class prediction method based on novel features. Biochimie 2013; 95(9): 1741-4.
[133]
Mechelke M, Habeck M. A probabilistic model for secondary structure prediction from protein chemical shifts. Proteins: Struct Funct Bioinform 2013; 81(6): 984-93.
[134]
Kalev I, Habeck M. Confidence-guided local structure prediction with HHfrag. PLoS One 2013; 8(10): e76512.
[135]
Liu BL, Zhu W, Li B, Cao Z. A combination of feature extraction methods with an ensemble of support vector machines for bacterial virulent proteins prediction. J Comput Theor Nanosci 2015; 12(8): 1813-7.
[136]
Fan C, Liu DW, Huang R, Chen ZG, Deng L. PredRSA: a gradient boosted regression trees approach for predicting protein solvent accessibility. BMC Bioinformatics 2016; 17: 8.
[137]
Olyaee MH, Yaghoubi A, Yaghoobi M. Predicting protein structural classes based on complex networks and recurrence analysis. J Theor Biol 2016; 404: 375-82.
[138]
Zheng W, Zhang C, Hanlon M, Ruan JS, Gao JZ. An ensemble method for prediction of conformational B-cell epitopes from antigen sequences. . Comput Biol Chem 2014; 49: 51-8.
[139]
Gao JZ, Cui W, Sheng YJ, Ruan JS, Kurgan L. PSIONplus: Accurate sequence-based predictor of ion channels and their types. PLoS One 2016; 11(4): e0152964.
[140]
Wang C, Dong XB, Han L, et al. Identification of WD40 repeats by secondary structure-aided profile-profile alignment. J Theor Biol 2016; 398: 122-9.
[141]
Li W, Kinch LN, Karplus PA, Grishin NV. ChSeq: A database of chameleon sequences. Protein Sci 2015; 24(7): 1075-86.
[142]
Kumari B, Kumar R, Kumar M. PalmPred: An SVM based palmitoylation prediction method using sequence profile information. PLoS One 2014; 9(2): e89246.
[143]
Zhang W, Yang J, He B, et al. Integration of QUARK and I-TASSER for Ab Initio Protein Structure Prediction in CASP11. Proteins 2016; 84(Suppl. 1): 76-86.
[144]
Shinkai-Ouchi F, Koyama S, Ono Y, et al. Predictions of cleavability of calpain proteolysis by quantitative structure-activity relationship analysis using newly determined cleavage sites and catalytic efficiencies of an oligopeptide array. Mol Cell Proteomics 2016; 15(4): 1262-80.
[145]
Kang H, Weiss TM, Bang I, Weis WI, Choi HJ. Structure of the intermediate filament-binding region of desmoplakin. PLoS One 2016; 11(1): e0147641.
[146]
Ye YT, Cheung DWL, Wang YD, et al. GLProbs: Aligning multiple sequences adaptively. IEEE/ACM Trans Comput Biol Bioinform 2015; 12(1): 67-78.
[147]
Scior T, Paiz-Candia B, Islas AA, et al. Predicting a double mutant in the twilight zone of low homology modeling for the skeletal muscle voltage-gated sodium channel subunit beta-1 (Na(v)1.4 beta 1). Comput Struct Biotechnol J 2015; 13: 229-40.
[148]
Faraj SE, Venturutti L, Roman EA, et al. The role of the N-terminal tail for the oligomerization, folding and stability of human frataxin. FEBS Open Bio 2013; 3: 310-20.
[149]
Wang JM, Li Y, Modis Y. Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses. Virology 2014; 454: 93-101.
[150]
Raucci R, Colonna G, Giovane A, Castello G, Costantini S. N-terminal region of human chemokine receptor CXCR3: Structural analysis of CXCR3(1-48) by experimental and computational studies. Biochim Biophys Acta 2014; 1844(10): 1868-80.
[151]
Rana A, Rub A, Akhter Y. Proteome-scale identification of outer membrane proteins in Mycobacterium avium subspecies paratuberculosis using a structure based combined hierarchical approach. Mol Biosyst 2014; 10(9): 2329-37.
[152]
Lee WK, Ahn HJ, Yu YG, Nam HW. Rhoptry protein 6 from Toxoplasma gondii is an intrinsically disordered protein. Protein Expr Purif 2014; 101: 146-51.
[153]
Wu ZY, Han RPS. SAAS: Short amino acid sequence-a promising protein secondary structure prediction method of single sequence. Int J Bioautom 2013; 17(2): 65-72.
[154]
Trejo-Soto PJ, Aguayo-Ortiz R, Yepez-Mulia L, Hernandez-Campos A, Medina-Franco JL, Castillo R. Insights into the structure and inhibition of Giardia intestinalis arginine deiminase: Homology modeling, docking, and molecular dynamics studies. J Biomol Struct Dyn 2016; 34(4): 732-48.
[155]
Saw WG, Eisenhaber B, Eisenhaber F, Gruber G. Low-resolution structure of the soluble domain GPAA1 (yGPAA(170-247)) of the glycosylphosphatidylinositol transamidase subunit GPAA1 from Saccharomyces cerevisiae. Biosci Rep 2013; 33: 361-9.
[156]
Eskandari V, Yakhchali B, Sadeghi M, Karkhane AA. In silico design and construction of metal-binding hybrid proteins for specific removal of cadmium based on CS3 pili display on the surface of Escherichia coli. Biotechnol Appl Biochem 2013; 60(6): 564-72.
[157]
Patel MS, Mazumdar HS. Knowledge base and neural network approach for protein secondary structure prediction. J Theor Biol 2014; 361: 182-9.
[158]
Sakthivel S. S KMH. NNvPDB: Neural network based protein secondary structure prediction with PDB validation. Bioinformation 2015; 11(8): 416-21.
[159]
Mugilan A, Jemimah S, Jennifer P. Novel method of protein structure prediction (NPSPM) based on short range interactions between amino acids. Trends Bioinform 2014; 7(1): 1-6.
[160]
Yu JY, Xiang LJ, Hong J, Zhang WD. HMM-Based prediction for protein structural motifs’ two local properties: Solvent accessibility and backbone torsion angles. Protein Pept Lett 2013; 20(2): 156-64.
[161]
Hayat M, Iqbal N. Discriminating protein structure classes by incorporating pseudo average chemical shift to chou’s general PseAAC and support vector machine. Comput Methods Programs Biomed 2014; 116(3): 184-92.
[162]
Mooney C, Haslam NJ, Holton TA, Pollastri G, Shields DC. PeptideLocator: Prediction of bioactive peptides in protein sequences. Bioinformatics 2013; 29(9): 1120-6.
[163]
Cheung NJ, Ding XM, Shen HB. Protein folds recognized by an intelligent predictor based-on evolutionary and structural information. J Comput Chem 2016; 37(4): 426-36.
[164]
Zhang H, Kurgan L. Improved prediction of residue flexibility by embedding optimized amino acid grouping into RSA-based linear models. Amino Acids 2014; 46(12): 2665-80.
[165]
Kong L, Kong LF, Jing R. improving the prediction of protein structural class for low-similarity sequences by incorporating evolutionary and structural information. JACIII 2016; 20(3): 402-11.
[166]
Maurice KJ. SSThread: Template-free protein structure prediction by threading pairs of contacting secondary structures followed by assembly of overlapping pairs. J Comput Chem 2014; 35(8): 644-56.
[167]
Lyons J, Dehzangi A, Heffernan R, et al. Predicting backbone C alpha angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network. J Comput Chem 2014; 35(28): 2040-6.
[168]
Dehzangi A, Paliwal K, Lyons J, Sharma A, Sattar A. Proposing a highly accurate protein structural class predictor using segmentation-based features. BMC Genomics 2014; 15(Suppl. 1): S2.
[169]
Paliwal KK, Sharma A, Lyons J, Dehzangi A. Improving protein fold recognition using the amalgamation of evolutionary-based and structural based information. BMC Bioinformatics 2014; 15(Suppl. 16): S12.
[170]
Peng Y, Yu K, Zhang Y, Islam S, Sun D, Ma W. Two novel y-type high molecular weight glutenin genes in chinese wheat landraces of the yangtze-river region. PLoS One 2015; 10(11): e0142348.
[171]
Lin XY, Chen S, Xue XY, et al. Chimerically fused antigen rich of overlapped epitopes from latent membrane protein 2 (LMP2) of Epstein-Barr virus as a potential vaccine and diagnostic agent. Cell Mol Immunol 2016; 13(4): 492-501.
[172]
Hasan MA, Mazumder MHH, Chowdhury AS, Datta A, Khan MA. Molecular-docking study of malaria drug target enzyme transketolase in Plasmodium falciparum 3D7 portends the novel approach to its treatment. Source Code Biol Med 2015; 10: 7.
[173]
Ramalingam V, Rajaram R, Suresh V. Secondary structure prediction of scleractinia corals: A proteomic approach. Indian J Geo-Mar Sci 2013; 42(4): 503-9.
[174]
Bhati J, Chaduvula PK, Kumar S, Rai A. Phylogenetic analysis and secondary structure prediction for drought tolerant Cap binding proteins of plant species. Indian J Agric Sci 2013; 83(1): 21-5.
[175]
Sheoran S, Pandey B, Sharma P, et al. In silico comparative analysis and expression profile of antioxidant proteins in plants. Genet Mol Res: GMR 2013; 12(1): 537-51.
[176]
Ye WW, Wang Y, Wang YC. Bioinformatics analysis reveals abundant short alpha-helices as a common structural feature of oomycete RxLR Effector Proteins. PLoS One 2015; 10(8): e0135240.
[177]
Corradini E, Burgers PP, Plank M, Heck AJR, Scholten A. Huntingtin-associated Protein 1 (HAP1) Is a cGMP-dependent Kinase Anchoring Protein (GKAP) Specific for the cGMP-dependent Protein Kinase I beta Isoform. J Biol Chem 2015; 290(12): 7887-96.
[178]
Xu D, Zhang Y. Toward optimal fragment generations for ab initio protein structure assembly. Proteins: Struct Funct Bioinf 2013; 81(2): 229-39.
[179]
Elbashir MK, Wang JX, Wu FX, Wang LS. Predicting beta-turns in proteins using support vector machines with fractional polynomials. Proteome Sci 2013; 11(Suppl. 1): S5.
[180]
Chen SH, Meller J, Elber R. Comprehensive analysis of sequences of a protein switch. Protein Sci 2016; 25(1): 135-46.
[181]
Lin MH, Hsu HJ, Bartenschlager R, Fischer WB. Membrane undulation induced by NS4A of Dengue virus: A molecular dynamics simulation study. J Biomol Struct Dyn 2014; 32(10): f1552-62.