[1]
Parker, A.R.; Petluru, P.N.; Wu, M.; Zhao, M.; Kochat, H.; Hausheer, F.H. BNP7787-mediated modulation of paclitaxel- and cisplatin-induced aberrant microtubule protein polymerization in vitro. Mol. Cancer Ther., 2010, 9(9), 2558-2567.
[2]
Duan, Z.; Chen, C.; Qin, J.; Liu, Q.; Wang, Q.; Xu, X.; Wang, J. Cell-penetrating peptide conjugates to enhance the antitumor effect of paclitaxel on drug-resistant lung cancer. Drug Deliv., 2017, 24(1), 752-764.
[3]
Guohua, H.; Hongyang, L.; Zhiming, J.; Danhua, Z.; Haifang, W. Study of small-cell lung cancer cell-based sensor and its applications in chemotherapy effects rapid evaluation for anticancer drugs. Biosens. Bioelectron., 2017, 97, 184-195.
[4]
Lai, Y.; Lai, S.; Yen, S. Paclitaxel/hydroxyapatite composite coatings on titanium alloy for biomedical applications. Mater. Sci. Eng. C, 2017, 79, 622-628.
[5]
Wang, X.; Liu, X.; Li, Y.; Wang, P.; Feng, X.; Liu, Q.; Yan, F.; Zheng, H. Sensitivity to antitubulin chemotherapeutics is potentiated by a photoactivable nanoliposome. Biomaterials, 2017, 141, 50-62.
[6]
Castle, B.T.; McCubbin, S.; Prahl, L.S.; Bernens, J.N.; Sept, D.; Odde, D.J. Mechanisms of kinetic stabilization by the drugs paclitaxel and vinblastine. Mol. Biol. Cell, 2017, 28(9), 1238-1257.
[7]
Benbow, S.J.; Wozniak, K.M.; Kulesh, B.; Savage, A.; Slusher, B.S.; Littlefield, B.A.; Jordan, M.A.; Wilson, L.; Feinstein, S.C. Microtubule-targeting agents eribulin and paclitaxel differentially affect neuronal cell bodies in chemotherapy-induced peripheral neuropathy. Neurotox. Res., 2017, 32(1), 151-162.
[8]
Kollareddy, M.; Sherrard, A.; Park, J.H.; Szemes, M.; Gallacher, K.; Melegh, Z.; Oltean, S.; Michaelis, M.; Cinatl, J.; Kaidi, A. The small molecule inhibitor YK-4-279 disrupts mitotic progression of neuroblastoma cells, overcomes drug resistance and synergizes with inhibitors of mitosis. Cancer Lett., 2017, 403, 74-85.
[9]
Kwon, W.S.; Rha, S.Y.; Jeung, H.; Kim, T.S.; Chung, H.C. Modulation of HAT activity by the BRCA2 N372H variation is a novel mechanism of paclitaxel resistance in breast cancer cell lines. Biochem. Pharmacol., 2017, 138, 163-173.
[10]
Shi, X.; Sun, X. Regulation of paclitaxel activity by microtubule-associated proteins in cancer chemotherapy. Cancer Chemother. Pharmacol., 2017, 80(5), 909-917.
[11]
Wang, R.C.; Chen, X.; Parissenti, A.M.; Joy, A.A.; Tuszynski, J.; Brindley, D.N.; Wang, Z. Sensitivity of docetaxel-resistant MCF-7 breast cancer cells to microtubule-destabilizing agents including vinca alkaloids and colchicine-site binding agents. PLoS One, 2017, 12(8), e0182400.
[12]
Wijdeven, R.H.; Pang, B.; Assaraf, Y.G.; Neefjes, J. Old drugs, novel ways out: drug resistance toward cytotoxic chemotherapeutics. Drug Resist. Updat., 2016, 28, 65-81.
[13]
Kit, W.C.; Segarra, I. Simultaneous HPLC determination of metronidazole and spiramycin in plasma and brain of mouse. Curr. Pharm. Anal., 2011, 7(4), 262-267.
[14]
Ma, W.; Wang, J.; Guo, Q.; Tu, P. Simultaneous determination of doxorubicin and curcumin in rat plasma by LC-MS/MS and its application to pharmacokinetic study. J. Pharm. Biomed. Anal., 2015, 111, 215-221.
[15]
Zhang, Q.; Wang, J.; He, H.; Liu, H.; Yan, X.; Zou, K. Trametenolic acid B reverses multidrug resistance in breast cancer cells through regulating the expression level of P-glycoprotein. Phytother. Res., 2014, 28(7), 1037-1044.
[16]
Wu, C.P.; Hsiao, S.H.; Murakami, M.; Lu, Y.J.; Li, Y.Q.; Huang, Y.H.; Hung, T.H.; Ambudkar, S.V.; Wu, Y.S. Alpha-mangostin reverses multidrug resistance by attenuating the function of the multidrug resistance-linked ABCG2 transporter. Mol. Pharm., 2017, 14(8), 2805-2814.
[17]
Long, S.; Sousa, E.; Kijjoa, A.; Pinto, M.M. Marine natural products as models to circumvent multidrug resistance. Molecules, 2016, 21(7), E892.
[18]
Levrier, C.; Rockstroh, A.; Gabrielli, B.; Kavallaris, M.; Lehman, M.; Davis, R.A.; Sadowski, M.C.; Nelson, C.C. Discovery of thalicthuberine as a novel antimitotic agent from nature that disrupts microtubule dynamics and induces apoptosis in prostate cancer cells. Cell Cycle, 2017, 17(5), 652-668.
[19]
Mi, K.K.; Kim, Y.; Choo, H.; Chong, Y. Quercetin-glutamic acid conjugate with a non-hydrolysable linker; a novel scaffold for multidrug resistance reversal agents through inhibition of P-glyco-protein. Bioorg. Med. Chem., 2017, 25(3), 1219-1226.
[20]
Lv, L.; Qiu, K.; Yu, X.; Chen, C.; Qin, F.; Shi, Y.; Ou, J.; Zhang, T.; Zhu, H.; Wu, J.; Liu, C.; Li, G. Amphiphilic copolymeric micelles for doxorubicin and curcumin co-delivery to reverse multidrug resistance in breast cancer. J. Biomed. Nanotechnol., 2016, 12(5), 973-985.
[22]
Thuane, C.F.D.N.; Meza Casa, D. Facco Dalmolin, L.; Ana, C. D. M.; Maissar Khalil, N.; Mara Mainardes, R. Development and validation of an hplc method using fluorescence detection for the quantitative determination of curcumin in PLGA and PLGA-PEG nanoparticles. Curr. Pharm. Anal., 2012, 8(4), 324-333.
[23]
Lv, L.; Shen, Y.; Liu, J.; Wang, F.; Li, M.; Li, M.; Guo, A.; Wang, Y.; Zhou, D.; Guo, S. Enhancing curcumin anticancer efficacy through di-block copolymer micelle encapsulation. J. Biomed. Nanotechnol., 2014, 10(2), 179-193.
[24]
Kang, H.J.; Lee, S.H.; Price, J.E.; Kim, L.S. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB in breast cancer cells and potentiates the growth inhibitory effect of paclitaxel in a breast cancer nude mice model. Breast J., 2009, 15(3), 223-229.
[25]
Liu, Z.; Zhu, Y.Y.; Li, Z.Y.; Ning, S.Q. Evaluation of the efficacy of paclitaxel with curcumin combination in ovarian cancer cells. Oncol. Lett., 2016, 12(5), 3944-3948.
[26]
Cui, Y.; Zhang, M.; Zeng, F.; Jin, H.; Xu, Q.; Huang, Y. Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy. ACS Appl. Mater. Interfaces, 2016, 8(47), 32159-32169.
[27]
Quispe-Soto, E.T.; Calaf, G.M. Effect of curcumin and paclitaxel on breast carcinogenesis. Int. J. Oncol., 2016, 49(6), 2569-2577.
[28]
Anwar, M.; Akhter, S.; Mallick, N.; Mohapatra, S.; Zafar, S.; Rizvi, M.M.; Ali, A.; Ahmad, F.J. Enhanced anti-tumor efficacy of
paclitaxel with PEGylated lipidic nanocapsules in presence of curcumin
and poloxamer: In vitro and in vivo studiess Pharmacol.
Res, 2016. 113(Pt A), 146-165
[29]
Wang, X.; Song, L.; Li, N.; Qiu, Z.; Zhou, S.; Li, C.; Zhao, J.; Song, H.; Chen, X. Pharmacokinetics and biodistribution study of paclitaxel liposome in Sprague-Dawley rats and Beagle dogs by liquid chromatography-tandem mass spectrometry. Drug Res. (Stuttg.), 2013, 63(11), 603-606.
[30]
Baati, T.; Schembri, T.; Villard, C.; Correard, F.; Braguer, D.; Esteve, M.A. An ultrasensitive LC-MS/MS method with liquid phase extraction to determine paclitaxel in both cell culture medium and lysate promising quantification of drug nanocarriers release in vitro. J. Pharm. Biomed. Anal., 2015, 115, 300-306.
[31]
Li, J.; Tang, J.; Li, Y.; Yu, J.; Zhang, B.; Yu, C. Pharmacokinetic profile of paclitaxel in the plasma, lung, and diaphragm following intravenous or intrapleural administration in rats. Thorac. Cancer, 2015, 6(1), 43-48.
[32]
Bernabeu, E.; Flor, S.; Hocht, C.; Taira, C.; Chiappetta, D.; Tripodi, V.; Lucangioli, S. Development and validation of a highly sensitive HPLC method for determination of paclitaxel in pharmaceutical dosage forms and biological samples. Curr. Pharm. Anal., 2014, 10(3), 185-192.
[33]
Xiong, X.; Zhao, X.; Li, Y.; Song, Z. A Fast and efficient chemiluminescence method for determination and pharmacokinetic study of paclitaxel in rat plasma. Curr. Pharm. Anal., 2014, 10(4), 246-254.
[34]
Zhang, S.Q.; Fan, Y.M. Simultaneous quantification of paclitaxel prodrug and its released paclitaxel in human plasma by UPLC-MS/MS. Curr. Pharm. Anal., 2012, 9(2), 159-164.
[35]
Cai, S.; Huo, T.; Feng, W.; Chen, L.; Qin, F.; Li, F. Quantitative determination of mitiglinide in human plasma by ultra-performance liquid chromatography/electrospray ionization tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 868(1-2), 83-87.
[36]
Liu, Y.; Sun, J.; Lian, H.; Li, X.; Cao, W.; Bai, L.; Wang, Y.; He, Z. Determination of paclitaxel in hyaluronic acid polymeric micelles in rat blood by protein precipitation-micelle breaking method: application to a pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 935, 10-15.
[37]
Zhang, F.; Zhang, N.; Pang, L.; Tan, Y.; Xu, H. Quantification of heteroclitin D in rat plasma: validation of an LC/MS/MS method and its application in a preclinical pharmacokinetic study. Biomed. Chromat. Bmc, 2015, 29(5), 756-761.
[38]
Lin, Li.; Jin, S.; Ping, Y.; Zhonggui, H. Liquid chromatography–electrospray ionization–mass spectrometric method for the determination of hydrochlorothiazide in human plasma: application to a pharmacokinetic study. Anal. Lett., 2006, 39(15), 2797-2807.
[39]
Sheng, N.; Zhi, X.; Yuan, L.; Zhang, Z.; Jia, P.; Zhang, X.; Zhang, L.; Wang, X. Pharmacokinetic and excretion study of three secoiridoid glycosides and three flavonoid glycosides in rat by LC-MS/MS after oral administration of the Swertia pseudochinensis extract. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 967, 75-83.
[40]
Jiang, W.; Lv, L.; Zhou, S.; Huang, X.; Shi, X.; Lv, C.; Wu, L.; Xu, C. Simultaneous determination of l-dopa and its prodrug (S)-4-(2-acetamido-3-ethoxy-3-oxopropyl)-1,2-phenylene diacetate in rat plasma by high-performance liquid chromatography–tandem mass spectrometry and its application in a pharmacokinetic study. J. Pharm. Biomed. Anal., 2010, 53(3), 751-754.
[41]
Jiang, L.; Dai, J.; Huang, Z.; Du, Q.; Lin, J.; Wang, Y. Simultaneous determination of gastrodin and puerarin in rat plasma by HPLC and the application to their interaction on pharmacokinetics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 915-916, 8-12.
[42]
Harmita, H.; Suryadi, A.; Setiawati, D. Damayanti. Development and validation of a method for simultaneous quantification of seven water-soluble vitamins in pediatrics syrup by UPLC-MS/MS. Curr. Pharm. Anal., 2018, 14(1), 23-34.
[43]
He, W.; Martin, J.H.; Shaw, P.N.; Walpole, E.T.; Dimeski, G. The development of a rapid, simple and sensitive LC-MS/MS method, to guide clinical dosing, for the analysis of 5-fluorouracil in human plasma. Curr. Pharm. Anal., 2017, 13(4), 378-383.
[44]
Jing, Z.; Sui, Q.; Chen, W. Quantification of glycyrrhetic acid in human plasma by LC-MS/MS: Application to a pharmacokinetic study. Curr. Pharm. Anal., 2017, 13(4), 334-339.
[45]
Shammout, M.J.A.; Basci, N.E. Validated ultra performance liquide chromatography-tandom mass spectrometric method for determination of betamethasone or dexamethasone in pharmaceuticals. Curr. Pharm. Anal., 2018, 14(1), 68-75.
[46]
Luo, X.; Cai, N.F.; Cheng, Z.N. Development of a new LC–MS/MS based enzyme activity assay for recombinant urate oxidase in plasma and its application to pharmacokinetics in human. J. Pharm. Biomed. Anal., 2013, 81(7), 8-12.
[47]
Lu, S.; Jiang, K.; Qin, F.; Lu, X.; Li, F. Simultaneous quantification of enalapril and enalaprilat in human plasma by high-performance liquid chromatography–tandem mass spectrometry and its application in a pharmacokinetic study. J. Pharm. Biomed. Anal., 2009, 49(1), 163-167.