[1]
Little K, Thorne C, Luo C, et al. Disease progression in children with vertically-acquired HIV infection in sub-Saharan Africa: reviewing the need for HIV treatment. Curr HIV Res 2007; 5(2): 139-53.
[2]
Ahmad N. The vertical transmission of human immunodeficiency virus type 1: molecular and biological properties of the virus. Crit Rev Clin Lab Sci 2005; 42(1): 1-34.
[3]
Ahmad N. Molecular mechanism of HIV-1 vertical transmission and pathogenesis in infants. Adv Pharmacol 2008; 56: 453-508.
[4]
Ahmad N. Molecular mechanisms of HIV-1 mother-to-child transmission and infection in neonatal target cells. Life Sci 2011; 88(21-22): 980-6.
[5]
Cohen EA, Terwilliger EF, Sodroski JG, Haseltine WA. Identification of a protein encoded by the vpu gene of HIV-1. Nature 1988; 334: 532-4.
[6]
Strebel K, Klimkait T, Martin M. A novel gene of HIV-1, vpu, and its 16-kilodalton product. Science 1988; 241(4870): 1221-3.
[7]
Maldarelli F, Chen MY, Willey RL, Strebel K. Human immunodeficiency virus type 1 Vpu protein is an oligomeric type I integral membrane protein. J Virol 1993; 67(8): 5056-61.
[8]
Tokarev A and, Guatelli J. Misdirection of membrane trafficking by HIV-1 Vpu and Nef. Keys to viral virulence and persistence. Cell Logist 2011; 1(3): 90-102.
[9]
Schwartz S, Felber BK, Fenyo EM, Pavlakis GN. Env and vpu proteins of human immunodeficiency virus type 1 are produced from multiple bicistronic mRNAs. J Virol 1990; 64: 5448-56.
[10]
Willey RL, Maldarelli F, Martin MA, Strebel K. Human Immunodeficiency Virus Type 1 Vpu Protein Induces Rapid Degradation of CD4. J Virol 1992; 66(12): 7193-200.
[11]
Crise B, Buonocore L and, Rose JK. CD4 is retained in the endoplasmic reticulum by the human immunodeficiency virus type 1 glycoprotein precursor. J Virol 1990; 64(11): 5585-93.
[12]
Schubert U, Anton LC, Bacik I, Cox JH, Bour S. CD4 Glycoprotein Degradation Induced by Human Immunodeficiency Virus Type 1 Vpu Protein Requires the Function of Proteasomes and the Ubiquitin-Conjugating Pathway. J Virol 1998; 72: 2280-8.
[13]
Terwilliger EF, Cohen EA, Lu YC, Sodroski JG, Haseltine WA. Functional role of human immunodeficiency virus type 1 vpu. Proceedings of the National Academy of Science of the Unites States of America. Proc Natl Acad Sci 1989; 86: 5163-7.
[14]
Bour S, Strebel K. The HIV-1 Vpu protein: a multifunctional enhancer of viral particle release. Microbes Infect 2003; 5: 1029-39.
[15]
Lee CN, Wang WK, Fan WS, et al. Determination of Human Immunodeficiency Virus Type 1 Subtypes in Taiwan by vpu Gene Analysis. J Clin Microbiol 2000; 38(7): 2468-74.
[16]
Tamura K, Peterson D, Peterson N, et al. MEGA 5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 2011; 28: 2731-9.
[17]
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucle Acids Symp Ser 1999; 41: 95-8.
[18]
Korber B. HIV Signature and Sequence Variation Analysis. Computational Analysis of HIV Molecular Sequences. In: Rodrigo AG, Learn GH, Eds. Allen G . Dordrecht, Netherlands: Kluwer Academic Publishers 2000; pp. 55-72.
[19]
Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 2015; 31(16): 2745-7.
[20]
Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the Functional Effect of Amino Acid Substitutions and Indels. PLoS ONE 2012; 7(10): e46688.
[21]
Choi Y. A Fast Computation of Pairwise Sequence Alignment Scores Between a Protein and a Set of Single-Locus Variants of Another Protein. In: Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine (BCB ’12). ACM: New York, NY, USA 2012; pp. 414-17.
[22]
Siddappa NB, Dash PK, Mahadevan A, et al. Identification of Subtype C Human Immunodeficiency Virus Type 1 by Subtype-Specific PCR and its Use in the Characterization of Viruses Circulating in the Southern Parts of India. J Clin Microbiol 2004; 42(6): 2742-51.
[23]
Sharma U, Gupta P, Singhal M, et al. Comparative Genetic Variability in HIV-1 Subtype C nef Gene in Early Age Groups of Infants. J Med Virol 2017; 89(9): 1606-19.
[24]
Geffin R, Wolf D, Muller R, et al. Functional and Structural defects in HIV type 1 nef genes derived from pediatric long-term survivors. AIDS Res Hum Retroviruses 2000; 16: 1855-68.
[25]
Gojobori T, Yamaguchi Y, Ikeo K, Mizokami M. Evolution of pathogenic viruses with special reference to the rates of synonymous and nonsynonymous substitutions. Jpn J Genet 1994; 69: 481-8.
[26]
Strebel K, Klimkait T, Maldarelli F, Martin MA. Molecular and biochemical analyses of human immunodeficiency virus type 1 vpu protein. J Virol 1989; 63(9): 3784-91.
[27]
McCormick-Davis C, Dalton SB, Singh DK, Stephens EB. Comparison of Vpu Sequences from Diverse Geographical Isolates of HIV Type 1 Identifies the Presence of Highly Variable Domains, Additional Invariant Amino Acids, and a Signature Sequence Motif Common to Subtype C Isolates. AIDS Res Hum Retroviruses 2000; 16(11): 1089-95.
[28]
Cordes FS, Kukol A, Forrest LR, et al. The structure of the HIV-1 Vpu ion channel: modelling and simulation studies. Biochimica et Biophysica Acta 2001; 1512: 291-8.
[29]
Fischer WB. Vpu from HIV-1 on an atomic scale: experiments and computer simulations. FEBS Lett 2003; 552: 39-46.
[30]
Mehnert T, Routh A, Judge PJ, Lam YH, Fischer D, et al. Biophysical characterization of Vpu from HIV-1 suggests a channel-pore dualism. Proteins 2008; 70: 1488-97.
[31]
Padhi S, Burri RR, Jameel S, Priyakumar UD. Atomistic Detailed Mechanism and Weak Cation-Conducting Activity of HIV-1 Vpu Revealed by Free Energy Calculations. PLoS ONE 2014; 9(11): e112983.
[32]
Bonifacino JS, Traub LM. Signals for sorting of transmembrane proteins to endosome and lysosomes. Annu Rev Biochem 2003; 72: 395-447.
[33]
Ruiz A, Hill MS, Schmitt K, Guatelli J, Stephens EB. Requirements of the membrane proximal tyrosine and dileucine-based sorting signals for efficient transport of the subtype C Vpu protein to the plasma membrane and in virus release. Virol J 2008; 378(1): 58-68.
[34]
Tiganos E, Yao XJ, Friborg J, Daniel N, Cohen EA. Putative α Helical Structures in the Human Immunodeficiency Virus Type 1 Vpu Protein and CD4 Are Involved in Binding and Degradation of the CD4 Molecule. J Virol 1997; 71(6): 4452-60.
[35]
Hill MS, Ruiz A, Schmitt K, Stephens EB. Identification of amino acids within the second alpha helical domain of the human immunodeficiency virus type 1 Vpu that are critical for preventing CD4 cell surface expression. Virol J 2010; 397(1): 104-12.
[36]
Estrabaud E, Le Rouzic E, Lopez-Verges S, et al. Regulated degradation of the HIV-1 Vpu protein through a bTrCP-independent pathway limits the release of viral particles. PLoS Pathog 2007; 3(7): e104.
[37]
Nomaguchi M, Fujita M, Adachi A. Role of HIV-1 Vpu protein for virus spread and pathogenesis. Microbes and Infect 2008; 10: 960-7.