Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Progress in the Development of Fluorometric Chemosensors to Detect Enzymatic Activity

Author(s): Tingwen Wei, Fang Wang*, Zhijie Zhang, Jiang Qiang, Jing Lv, Tiantian Chen, Jia Li and Xiaoqiang Chen*

Volume 26, Issue 21, 2019

Page: [3923 - 3957] Pages: 35

DOI: 10.2174/0929867325666180214105552

Price: $65

Abstract

Enzymes are a class of macromolecules that function as highly efficient and specific biological catalysts requiring only mild reaction conditions. Enzymes are essential to maintaining life activities, including promoting metabolism and homeostasis, and participating in a variety of physiological functions. Accordingly, enzymatic levels and activity are closely related to the health of the organism, where enzymatic dysfunctions often lead to corresponding diseases in the host. Due to this, diagnosis of certain diseases is based on the levels and activity of certain enzymes. Therefore, rapid real-time and accurate detection of enzymes in situ are important for diagnosis, monitoring, clinical treatment and pathological studies of disease. Fluorescent probes have unique advantages in terms of detecting enzymes, including being simple to use in highly sensitive and selective real-time rapid in-situ noninvasive and highly spatial resolution visual imaging. However, fluorescent probes are most commonly used to detect oxidoreductases, transferases and hydrolases due to the processes and types of enzyme reactions. This paper summarizes the application of fluorescent probes to detect these three types of enzymes over the past five years. In addition, we introduce the mechanisms underlying detection of these enzymes by their corresponding probes.

Keywords: Chemosensor, fluorescence, enzymatic activity, oxidoreductase, transferases, hydrolases.

[1]
Madhu, A.; Chakraborty, J.N. Developments in application of enzymes for textile processing. J. Clean. Prod., 2017, 145, 114-133.
[http://dx.doi.org/10.1016/j.jclepro.2017.01.013]
[2]
McDonald, A.G.; Tipton, K.F. Fifty-five years of enzyme classification: advances and difficulties. FEBS J., 2014, 281(2), 583-592.
[http://dx.doi.org/10.1111/febs.12530] [PMID: 24103004]
[3]
Laurino, S.; Grossi, G.; Pucci, P.; Flagiello, A.; Bufo, S.A.; Bianco, G.; Salvia, R.; Vinson, S.B.; Vogel, H.; Falabella, P. Identification of major Toxoneuron nigriceps venom proteins using an integrated transcriptomic/proteomic approach. Insect Biochem. Mol. Biol., 2016, 76, 49-61.
[http://dx.doi.org/10.1016/j.ibmb.2016.07.001] [PMID: 27388778]
[4]
Narayanan, C.; Bernard, D.N.; Doucet, N. Role of conformational motions in enzyme function: selected methodologies and case studies. Catalysts, 2016, 6(6), 81.
[http://dx.doi.org/10.3390/catal6060081] [PMID: 28367322]
[5]
Garcia-Viloca, M.; Gao, J.; Karplus, M.; Truhlar, D.G. How enzymes work: analysis by modern rate theory and computer simulations. Science, 2004, 303(5655), 186-195.
[http://dx.doi.org/10.1126/science.1088172] [PMID: 14716003]
[6]
Qian, M.; Zhang, L.; Wang, J. Progress in research of reaction-activated fluorescent probe for enzymes. Ciesc Journal, 2017, 68(01), 8-22.
[7]
Helsper, C.; van Essen, G.; Frijling, B.D.; de Wit, N.J. Follow-up of mild alanine aminotransferase elevation identifies hidden hepatitis C in primary care. Br. J. Gen. Pract., 2012, 62(596), e212-e216.
[http://dx.doi.org/10.3399/bjgp12X630115] [PMID: 22429439]
[8]
Schmidt, E.; Schmidt, F.W. Clinical enzymology. FEBS Lett., 1976, 62(Suppl.), E62-E79.
[http://dx.doi.org/10.1016/0014-5793(76)80855-1] [PMID: 767140]
[9]
Suda, I.; Ishikawa, F.; Hatakeyama, M.; Miyawaki, M.; Kudo, T.; Hirano, K.; Ito, A.; Yamakawa, O.; Horiuchi, S. Intake of purple sweet potato beverage affects on serum hepatic biomarker levels of healthy adult men with borderline hepatitis. Eur. J. Clin. Nutr., 2008, 62(1), 60-67.
[http://dx.doi.org/10.1038/sj.ejcn.1602674] [PMID: 17299464]
[10]
Parker, H.M.; Johnson, N.A.; Burdon, C.A.; Cohn, J.S.; O’Connor, H.T.; George, J. Omega-3 supplementation and non-alcoholic fatty liver disease: a systematic review and meta-analysis. J. Hepatol., 2012, 56(4), 944-951.
[http://dx.doi.org/10.1016/j.jhep.2011.08.018] [PMID: 22023985]
[11]
Li, Z.; Wang, Y.; Zhang, X.; Zeng, C.; Hu, L.; Liang, X. A tyrosinase-triggered oxidative reaction-based “Turn-on” fluorescent probe for imaging in living melanoma cells. Sens. Actuators B Chem., 2017, 242, 189-194.
[http://dx.doi.org/10.1016/j.snb.2016.11.011]
[12]
Ramos-Vara, J.A.; Miller, M.A. Immunohistochemical identification of canine melanocytic neoplasms with antibodies to melanocytic antigen PNL2 and tyrosinase: comparison with Melan A. Vet. Pathol., 2011, 48(2), 443-450.
[http://dx.doi.org/10.1177/0300985810382095] [PMID: 20858741]
[13]
Khajali, Z.; Mohammadzadeh, S.; Maleki, M.; Peighambari, M.M.; Sadeghpoor, A.; Ghavidel, A.; Elahi, B.; Mirzaaghayan, M. Fibrinolytic therapy for mechanical pulmonary valve thrombosis. Pediatr. Cardiol., 2015, 36(1), 171-176.
[http://dx.doi.org/10.1007/s00246-014-0982-7] [PMID: 25145294]
[14]
Bunik, V.I.; Tylicki, A.; Lukashev, N.V. Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models. FEBS J., 2013, 280(24), 6412-6442.
[http://dx.doi.org/10.1111/febs.12512] [PMID: 24004353]
[15]
Testa, B.; Pedretti, A.; Vistoli, G. Reactions and enzymes in the metabolism of drugs and other xenobiotics. Drug Discov. Today, 2012, 17(11-12), 549-560.
[http://dx.doi.org/10.1016/j.drudis.2012.01.017] [PMID: 22305937]
[16]
Alberti, D.; van’t Erve, M.; Stefania, R.; Ruggiero, M.R.; Tapparo, M.; Geninatti Crich, S.; Aime, S. A quantitative relaxometric version of the ELISA test for the measurement of cell surface biomarkers. Angew. Chem. Int. Ed. Engl., 2014, 53(13), 3488-3491.
[http://dx.doi.org/10.1002/anie.201310959] [PMID: 24615977]
[17]
Song, Y.; Wei, W.; Qu, X. Colorimetric biosensing using smart materials. Adv. Mater., 2011, 23(37), 4215-4236.
[http://dx.doi.org/10.1002/adma.201101853] [PMID: 21800383]
[18]
Chikkaveeraiah, B.V.; Bhirde, A.A.; Morgan, N.Y.; Eden, H.S.; Chen, X. Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano, 2012, 6(8), 6546-6561.
[http://dx.doi.org/10.1021/nn3023969] [PMID: 22835068]
[19]
Qiang, J.; Chang, C.; Zhu, Z.; Wei, T.; Yu, W.; Wang, F.; Yin, J.; Wang, Y.; Zhang, W.; Xie, J.; Chen, X. A dinuclear-copper(II) complex-based sensor for pyrophosphate and its applications to detecting pyrophosphatase activity and monitoring polymerase chain reaction. Sens. Actuators B Chem., 2016, 233, 591-598.
[http://dx.doi.org/10.1016/j.snb.2016.04.082]
[20]
Zhu, H.; Fan, J.; Du, J.; Peng, X. Fluorescent probes for sensing and imaging within specific cellular organelles. Acc. Chem. Res., 2016, 49(10), 2115-2126.
[http://dx.doi.org/10.1021/acs.accounts.6b00292] [PMID: 27661761]
[21]
Ren, X.; Wang, F.; Lv, J.; Wei, T.; Zhang, W.; Wang, Y.; Chen, X. An ESIPT-based fluorescent probe for highly selective detection of glutathione in aqueous solution and living cells. Dyes Pigments, 2016, 129, 156-162.
[http://dx.doi.org/10.1016/j.dyepig.2016.02.027]
[22]
Zlokarnik, G.; Negulescu, P.A.; Knapp, T.E.; Mere, L.; Burres, N.; Feng, L.; Whitney, M.; Roemer, K.; Tsien, R.Y. Quantitation of transcription and clonal selection of single living cells with β-lactamase as reporter. Science, 1998, 279(5347), 84-88.
[http://dx.doi.org/10.1126/science.279.5347.84] [PMID: 9417030]
[23]
Nath, N.; Mitchell, J.B. Is EC class predictable from reaction mechanism? BMC Bioinformatics, 2012, 13, 60.
[http://dx.doi.org/10.1186/1471-2105-13-60] [PMID: 22530800]
[24]
May, S.W.; Padgette, S.R. Oxidoreductase enzymes in biotechnology: current status and future potential. Nat. Biotechnol., 1983, 1, 677-686.
[http://dx.doi.org/10.1038/nbt1083-677]
[25]
Gong, L.; Zhang, C.M.; Lv, J.F.; Zhou, H.H.; Fan, L. Polymorphisms in cytochrome P450 oxidoreductase and its effect on drug metabolism and efficacy. Pharmacogenet. Genomics, 2017, 27(9), 337-346.
[http://dx.doi.org/10.1097/FPC.0000000000000297] [PMID: 28731962]
[26]
Khatoon, N.; Jamal, A.; Ali, M.I. Polymeric pollutant biodegradation through microbial oxidoreductase: A better strategy to safe environment. Int. J. Biol. Macromol., 2017, 105(Pt 1), 9-16.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.047] [PMID: 28648638]
[27]
Kwon, N.; Cho, M.K.; Park, S.J.; Kim, D.; Nam, S.J.; Cui, L.; Kim, H.M.; Yoon, J. An efficient two-photon fluorescent probe for human NAD(P)H:quinone oxidoreductase (hNQO1) detection and imaging in tumor cells. Chem. Commun. (Camb.), 2017, 53(3), 525-528.
[http://dx.doi.org/10.1039/C6CC08971B] [PMID: 27959364]
[28]
Wu, X.; Li, L.; Shi, W.; Gong, Q.; Ma, H. Near-infrared fluorescent probe with new recognition moiety for specific detection of tyrosinase activity: design, synthesis, and application in living cells and zebrafish. Angew. Chem. Int. Ed. Engl., 2016, 55(47), 14728-14732.
[http://dx.doi.org/10.1002/anie.201609895] [PMID: 27775216]
[29]
Wang, C.; Yan, S.; Huang, R.; Feng, S.; Fu, B.; Weng, X.; Zhou, X. A turn-on fluorescent probe for detection of tyrosinase activity. Analyst (Lond.), 2013, 138(10), 2825-2828.
[http://dx.doi.org/10.1039/c3an00272a] [PMID: 23571425]
[30]
Ao, H.; Qian, Z.; Zhu, Y.; Zhao, M.; Tang, C.; Huang, Y.; Feng, H.; Wang, A. A fluorometric biosensor based on functional Au/Ag nanoclusters for real-time monitoring of tyrosinase activity. Biosens. Bioelectron., 2016, 86, 542-547.
[http://dx.doi.org/10.1016/j.bios.2016.07.051] [PMID: 27448544]
[31]
Jankowska, D.A.; Trautwein-Schult, A.; Cordes, A.; Hoferichter, P.; Klein, C.; Bode, R.; Baronian, K.; Kunze, G. Arxula adeninivorans xanthine oxidoreductase and its application in the production of food with low purine content. J. Appl. Microbiol., 2013, 115(3), 796-807.
[http://dx.doi.org/10.1111/jam.12284] [PMID: 23773263]
[32]
Liu, G.; Wang, J.; Hou, Y.; Huang, Y.; Li, C.; Li, L.; Hu, S. Improvements of modified wheat protein disulfide isomerases with chaperone activity only on the processing quality of flour. Food Bioprocess Technol., 2017, 10(3), 568-581.
[http://dx.doi.org/10.1007/s11947-016-1840-9]
[33]
Schantz, M.L.; Schreiber, H.; Guillemaut, P.; Schantz, R. Changes in ascorbate peroxidase activities during fruit ripening in Capsicum annum. FEBS Lett., 1995, 358(2), 149-152.
[http://dx.doi.org/10.1016/0014-5793(94)01413-U] [PMID: 7828726]
[34]
Dinkova-Kostova, A.T.; Talalay, P. NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch. Biochem. Biophys., 2010, 501(1), 116-123.
[http://dx.doi.org/10.1016/j.abb.2010.03.019] [PMID: 20361926]
[35]
Li, X.; Zhang, H.; Xie, Y.; Hu, Y.; Sun, H.; Zhu, Q. Fluorescent probes for detecting monoamine oxidase activity and cell imaging. Org. Biomol. Chem., 2014, 12(13), 2033-2036.
[http://dx.doi.org/10.1039/c3ob42326c] [PMID: 24553601]
[36]
Wu, X.; Li, L.; Shi, W.; Gong, Q.; Li, X.; Ma, H. Sensitive and selective ratiometric fluorescence probes for detection of intracellular endogenous monoamine oxidase A. Anal. Chem., 2016, 88(2), 1440-1446.
[http://dx.doi.org/10.1021/acs.analchem.5b04303] [PMID: 26652905]
[37]
Xiang, Y.; He, B.; Li, X.; Zhu, Q. The design and synthesis of novel “turn-on” fluorescent probes to visualize monoamine oxidase-B in living cells. Rsc Adv., 2013, 3(15), 4876-4879.
[http://dx.doi.org/10.1039/c3ra22789h]
[38]
Shi, Y.; Zhang, S.; Zhang, X. A novel near-infrared fluorescent probe for selectively sensing nitroreductase (NTR) in an aqueous medium. Analyst (Lond.), 2013, 138(7), 1952-1955.
[http://dx.doi.org/10.1039/c3an36807f] [PMID: 23420121]
[39]
Paritala, H.; Carroll, K.S. A continuous spectrophotometric assay for adenosine 5′-phosphosulfate reductase activity with sulfite-selective probes. Anal. Biochem., 2013, 440(1), 32-39.
[http://dx.doi.org/10.1016/j.ab.2013.05.007] [PMID: 23711725]
[40]
Tian, F.; Jia, Y.; Zhang, Y.; Song, W.; Zhao, G.; Qu, Z.; Li, C.; Chen, Y.; Li, P. A HClO-specific near-infrared fluorescent probe for determination of Myeloperoxidase activity and imaging mitochondrial HClO in living cells. Biosens. Bioelectron., 2016, 86, 68-74.
[http://dx.doi.org/10.1016/j.bios.2016.06.039] [PMID: 27322938]
[41]
Huang, S.; Wang, L.; Huang, C.; Su, W.; Xiao, Q. Amino-functionalized graphene quantum dots based ratiometric fluorescent nanosensor for ultrasensitive and highly selective recognition of horseradish peroxidase. Sens. Actuators B Chem., 2016, 234, 255-263.
[http://dx.doi.org/10.1016/j.snb.2016.05.001]
[42]
Zhu, S.; He, L.; Zhang, F.; Li, M.; Jiao, S.; Li, Y.; Chen, M.; Zhao, X.E.; Wang, H. Fluorimetric evaluation of glutathione reductase activity and its inhibitors using carbon quantum dots. Talanta, 2016, 161, 769-774.
[http://dx.doi.org/10.1016/j.talanta.2016.09.048] [PMID: 27769479]
[43]
Fei, Q.; Zhou, L.; Wang, F.; Shi, B.; Li, C.; Wang, R.; Zhao, C. Rational construction of probes rendering ratiometric response to the cancer-specific enzyme NQO1. Dyes Pigments, 2017, 136, 846-851.
[http://dx.doi.org/10.1016/j.dyepig.2016.09.031]
[44]
Thompson, R.H. Classification and nomenclature of enzymes. Science, 1962, 137(3528), 405-408.
[http://dx.doi.org/10.1126/science.137.3528.405] [PMID: 13920938]
[45]
Cui, M.; Wang, L.; Xu, X.; Wang, Y.; Jiang, W. A loop-mediated cascade amplification strategy for highly sensitive detection of DNA methyltransferase activity. Sensor. Actuat. Biol. Chem., 2017, 244, 599-605.
[46]
Hou, X.; Zeng, F.; Wu, S. A fluorescent assay for γ-glutamyltranspeptidase via aggregation induced emission and its applications in real samples. Biosens. Bioelectron., 2016, 85, 317-323.
[http://dx.doi.org/10.1016/j.bios.2016.05.036] [PMID: 27183282]
[47]
Jiang, B.; Wei, Y.; Xu, J.; Yuan, R.; Xiang, Y. Coupling hybridization chain reaction with DNAzyme recycling for enzyme-free and dual amplified sensitive fluorescent detection of methyltransferase activity. Anal. Chim. Acta, 2017, 949, 83-88.
[http://dx.doi.org/10.1016/j.aca.2016.11.003] [PMID: 27876150]
[48]
Gao, T.; Yang, C.; Zheng, Y.G. Comparative studies of thiol-sensitive fluorogenic probes for HAT assays. Anal. Bioanal. Chem., 2013, 405(4), 1361-1371.
[http://dx.doi.org/10.1007/s00216-012-6522-5] [PMID: 23138472]
[49]
Margot, P.; Roten, C.A.; Karamata, D. N-acetylmuramoyl-L-alanine amidase assay based on specific radioactive labeling of muropeptide L-alanine: quantitation of the enzyme activity in the autolysin deficient Bacillus subtilis 168, flaD strain. Anal. Biochem., 1991, 198(1), 15-18.
[http://dx.doi.org/10.1016/0003-2697(91)90499-J] [PMID: 1686374]
[50]
Hunter, R.L.; Markert, C.L. Histochemical demonstration of enzymes separated by zone electrophoresis in starch gels. Science, 1957, 125(3261), 1294-1295.
[http://dx.doi.org/10.1126/science.125.3261.1294-a] [PMID: 13432800]
[51]
Horiuchi, M.; Fujimura, K.; Terashima, T.; Iso, T. Method for determination of angiotensin-converting enzyme activity in blood and tissue by high-performance liquid chromatography. J. Chromatogr. A, 1982, 233, 123-130.
[http://dx.doi.org/10.1016/S0378-4347(00)81738-7] [PMID: 6298259]
[52]
Cui, M.; Wang, L.; Xu, X.; Wang, Y.; Jiang, W. A loop-mediated cascade amplification strategy for highly sensitive detection of DNA methyltransferase activity. Sensor. Actuat. Biol. Chem., 2017, 244, 599-605.
[53]
Cho, W-K.; Jayanth, N.; Mullen, S.; Tan, T-H.; Jung, Y-J.; Cissé, I-I. Super-resolution imaging of fluorescently labeled, endogenous RNA Polymerase II in living cells with CRISPR/Cas9-mediated gene editing. Sci. Rep., 2016, 6, 35949-35957.
[http://dx.doi.org/10.1038/srep35949] [PMID: 27782203]
[54]
Oien, N-P.; Nguyen, L-T.; Jernigan, F-E.; Priestman, M-A.; Lawrence, D-S. Long-wavelength fluorescent reporters for monitoring protein kinase activity. Angew. Chem. Int. Ed. Engl., 2014, 53(15), 3975-3978.
[http://dx.doi.org/10.1002/anie.201309691] [PMID: 24604833]
[55]
Hou, X.; Zeng, F.; Wu, S. A fluorescent assay for γ-glutamyltranspeptidase via aggregation induced emission and its applications in real samples. Biosens. Bioelectron., 2016, 85, 317-323.
[http://dx.doi.org/10.1016/j.bios.2016.05.036] [PMID: 27183282]
[56]
Tong, H.; Zheng, Y.; Zhou, L.; Li, X.; Qian, R.; Wang, R.; Zhao, J.; Lou, K.; Wang, W. Enzymatic cleavage and subsequent facile intramolecular transcyclization for in situ fluorescence detection of γ-glutamyltranspetidase activities. Anal. Chem., 2016, 88(22), 10816-10820.
[http://dx.doi.org/10.1021/acs.analchem.6b03448] [PMID: 27797499]
[57]
Zhou, W.; Duckworth, B-P.; Geraghty, R-J. Fluorescent peptide sensors for tyrosylprotein sulfotransferase activity. Anal. Biochem., 2014, 461, 1-6.
[http://dx.doi.org/10.1016/j.ab.2014.05.025] [PMID: 24909447]
[58]
Jiang, B.; Wei, Y.; Xu, J.; Yuan, R.; Xiang, Y. Coupling hybridization chain reaction with DNAzyme recycling for enzyme-free and dual amplified sensitive fluorescent detection of methyltransferase activity. Anal. Chim. Acta, 2017, 949, 83-88.
[http://dx.doi.org/10.1016/j.aca.2016.11.003] [PMID: 27876150]
[59]
Laia, W-Y.; Tana, K-T. Environment-sensitive fluorescent turn-on chemical probe for the specific detection of O6-methylguanine-DNA methyltransferase (MGMT) in living cells. J. Chin. Chem. Soc. (Taipei), 2016, 63, 688-693.
[http://dx.doi.org/10.1002/jccs.201600015]
[60]
Gao, T.; Yang, C.; Zheng, Y.G. Comparative studies of thiol-sensitive fluorogenic probes for HAT assays. Anal. Bioanal. Chem., 2013, 405(4), 1361-1371.
[http://dx.doi.org/10.1007/s00216-012-6522-5] [PMID: 23138472]
[61]
Yuan, Y.; Zhang, C.J.; Kwok, R.T.K.; Mao, D.; Tang, B.Z.; Liu, B. Light-up probe based on AIEgens: dual signal turn-on for caspase cascade activation monitoring. Chem. Sci. (Camb.), 2017, 8(4), 2723-2728.
[http://dx.doi.org/10.1039/C6SC04322D] [PMID: 28553507]
[62]
Connolly, B.A.; Sanford, D.G.; Chiluwal, A.K.; Healey, S.E.; Peters, D.E.; Dimare, M.T.; Wu, W.; Liu, Y.; Maw, H.; Zhou, Y.; Li, Y.; Jin, Z.; Sudmeier, J.L.; Lai, J.H.; Bachovchin, W.W. Dipeptide boronic acid inhibitors of dipeptidyl peptidase IV: determinants of potency and in vivo efficacy and safety. J. Med. Chem., 2008, 51(19), 6005-6013.
[http://dx.doi.org/10.1021/jm800390n] [PMID: 18783201]
[63]
Adjémian, J.; Anne, A.; Cauet, G.; Demaille, C. Cleavage-sensing redox peptide monolayers for the rapid measurement of the proteolytic activity of trypsin and α-thrombin enzymes. Langmuir, 2010, 26(12), 10347-10356.
[http://dx.doi.org/10.1021/la100397g] [PMID: 20329721]
[64]
Tokarzewicz, A.; Romanowicz, L.; Sveklo, I.; Matuszczak, E.; Hermanowiczd, A.; Gorodkiewicz, E. SPRI biosensors for quantitative determination of matrix metalloproteinase-2. Anal. Methods, 2017, 9, 2407-2414.
[http://dx.doi.org/10.1039/C7AY00786H]
[65]
Chen, Y.K.; Tung, C.W.; Lee, J.Y.; Hung, Y.C.; Lee, C.H.; Chou, S.H.; Lin, H.S.; Wu, M.T.; Wu, I.C. Plasma matrix metalloproteinase 1 improves the detection and survival prediction of esophageal squamous cell carcinoma. Sci. Rep., 2016, 6(1), 30057.
[http://dx.doi.org/10.1038/srep30057] [PMID: 27436512]
[66]
Sato, D.; Kato, T. Novel fluorescent substrates for detection of trypsin activity and inhibitor screening by self-quenching. Bioorg. Med. Chem. Lett., 2016, 26(23), 5736-5740.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.053] [PMID: 27810242]
[67]
Dang, Q.; Gao, H.; Li, Z.; Qi, H.; Gao, Q.; Zhang, C. Simple and sensitive electrogenerated chemiluminescence peptide-based biosensor for detection of matrix metalloproteinase 2 released from living cells. Anal. Bioanal. Chem., 2016, 408(25), 7067-7075.
[http://dx.doi.org/10.1007/s00216-016-9360-z] [PMID: 26939670]
[68]
Xu, W.; Jing, P.; Yi, H.; Xue, S.; Yuan, R. Bimetallic Pt/Pd encapsulated mesoporous-hollow CeO2 nanospheres for signal amplification toward electrochemical peptide-based biosensing for matrix metalloproteinase 2. Sensor. Actuat. Biol. Chem., 2016, 230, 345-352.
[69]
Kisin-Finfer, E.; Ferber, S.; Blau, R.; Satchi-Fainaro, R.; Shabat, D. Synthesis and evaluation of new NIR-fluorescent probes for cathepsin B: ICT versus FRET as a turn-ON mode-of-action. Bioorg. Med. Chem. Lett., 2014, 24(11), 2453-2458.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.022] [PMID: 24767838]
[70]
Kuang, L.; Cao, S.P.; Zhang, L.; Li, Q.H.; Liu, Z.C.; Liang, R.P.; Qiu, J.D. A novel nanosensor composed of aptamer bio-dots and gold nanoparticles for determination of thrombin with multiple signals. Biosens. Bioelectron., 2016, 85, 798-806.
[http://dx.doi.org/10.1016/j.bios.2016.05.096] [PMID: 27288712]
[71]
Zhang, R.; Zhang, C.J.; Feng, G.; Hu, F.; Wang, J.; Liu, B. Specific light-up probe with aggregation-induced emission for facile detection of chymase. Anal. Chem., 2016, 88(18), 9111-9117.
[http://dx.doi.org/10.1021/acs.analchem.6b02073] [PMID: 27541711]
[72]
Nguyen, P.D.; Cong, V.T.; Baek, C.; Min, J. Fabrication of peptide stabilized fluorescent gold nanocluster/graphene oxide nanocomplex and its application in turn-on detection of metalloproteinase-9. Biosens. Bioelectron., 2017, 89(Pt 1), 666-672.
[http://dx.doi.org/10.1016/j.bios.2015.12.031] [PMID: 26725932]
[73]
Cai, B.; Rao, L.; Ji, X.; Bu, L.L.; He, Z.; Wan, D.; Yang, Y.; Liu, W.; Guo, S.; Zhao, X.Z. Autofluorescent gelatin nanoparticles as imaging probes to monitor matrix metalloproteinase metabolism of cancer cells. J. Biomed. Mater. Res. A, 2016, 104(11), 2854-2860.
[http://dx.doi.org/10.1002/jbm.a.35823] [PMID: 27376586]
[74]
Mu, J.; Liu, F.; Rajab, M.S.; Shi, M.; Li, S.; Goh, C.; Lu, L.; Xu, Q.H.; Liu, B.; Ng, L.G.; Xing, B. A small-molecule FRET reporter for the real-time visualization of cell-surface proteolytic enzyme functions. Angew. Chem. Int. Ed. Engl., 2014, 53(52), 14357-14362.
[http://dx.doi.org/10.1002/anie.201407182] [PMID: 25348774]
[75]
Liu, W.; Liu, S.J.; Kuang, Y.Q.; Luo, F.Y.; Jiang, J.H. Developing activity localization fluorescence peptide probe using thiol-ene click reaction for spatially resolved imaging of caspase-8 in live cells. Anal. Chem., 2016, 88(15), 7867-7872.
[http://dx.doi.org/10.1021/acs.analchem.6b02174] [PMID: 27388162]
[76]
Gong, Q.; Shi, W.; Li, L.; Wu, X.; Ma, H. Ultrasensitive fluorescent probes reveal an adverse action of dipeptide peptidase IV and fibroblast activation protein during proliferation of cancer cells. Anal. Chem., 2016, 88(16), 8309-8314.
[http://dx.doi.org/10.1021/acs.analchem.6b02231] [PMID: 27444320]
[77]
Na, Y.R.; Kim, S.Y.; Gaublomme, J.T.; Shalek, A.K.; Jorgolli, M.; Park, H.; Yang, E.G. Probing enzymatic activity inside living cells using a nanowire-cell “sandwich” assay. Nano Lett., 2013, 13(1), 153-158.
[http://dx.doi.org/10.1021/nl3037068] [PMID: 23244056]
[78]
Kim, T.I.; Kim, H.; Choi, Y.; Kim, Y. A fluorescent turn-on probe for the detection of alkaline phosphatase activity in living cells. Chem. Commun. (Camb.), 2011, 47(35), 9825-9827.
[http://dx.doi.org/10.1039/c1cc13819g] [PMID: 21818501]
[79]
Lee, C.L.; Wang, M.C.; Killian, C.S.; Slack, N.H.; Murphy, G.P.; Chu, T.M. Solid-phase immunofluorescent and immunoadsorbent assays of serum prostatic acid phosphatase. Prostate, 1980, 1(4), 427-439.
[http://dx.doi.org/10.1002/pros.2990010406] [PMID: 6792613]
[80]
Zhang, H.; Xiao, P.; Wong, Y.T.; Shen, W.; Chhabra, M.; Peltier, R.; Jiang, Y.; He, Y.; He, J.; Tan, Y.; Xie, Y.; Ho, D.; Lam, Y.W.; Sun, J.; Sun, H. Construction of an alkaline phosphatase-specific two-photon probe and its imaging application in living cells and tissues. Biomaterials, 2017, 140, 220-229.
[http://dx.doi.org/10.1016/j.biomaterials.2017.06.032] [PMID: 28662402]
[81]
Wang, F.; Zhang, C.; Xue, Q.; Li, H.; Xian, Y. Label-free upconversion nanoparticles-based fluorescent probes for sequential sensing of Cu2+, pyrophosphate and alkaline phosphatase activity. Biosens. Bioelectron., 2017, 95, 21-26.
[http://dx.doi.org/10.1016/j.bios.2017.04.010] [PMID: 28411533]
[82]
Zhao, M.; Feng, H.; Han, J.; Ao, H.; Qian, Z. Multi-stimuli responsive copper nanoclusters with bright red luminescence for quantifying acid phosphatase activity via redox-controlled luminescence switch. Anal. Chim. Acta, 2017, 984, 202-210.
[http://dx.doi.org/10.1016/j.aca.2017.06.046] [PMID: 28843565]
[83]
Nadji, M.; Morales, A.R. Immunohistochemistry of prostatic acid phosphatase. Ann. N. Y. Acad. Sci., 1982, 390, 133-141.
[http://dx.doi.org/10.1111/j.1749-6632.1982.tb40311.x] [PMID: 7046588]
[84]
Tan, Y.; Zhang, L.; Man, K.H.; Peltier, R.; Chen, G.; Zhang, H.; Zhou, L.; Wang, F.; Ho, D.; Yao, S.Q.; Hu, Y.; Sun, H. Reaction-based off-on near-infrared fluorescent probe for imaging alkaline phosphatase activity in living cells and mice. ACS Appl. Mater. Interfaces, 2017, 9(8), 6796-6803.
[http://dx.doi.org/10.1021/acsami.6b14176] [PMID: 28139117]
[85]
Song, Z.; Kwok, R.T.K.; Zhao, E.; He, Z.; Hong, Y.; Lam, J.W.Y.; Liu, B.; Tang, B.Z. A ratiometric fluorescent probe based on ESIPT and AIE processes for alkaline phosphatase activity assay and visualization in living cells. ACS Appl. Mater. Interfaces, 2014, 6(19), 17245-17254.
[http://dx.doi.org/10.1021/am505150d] [PMID: 25208827]
[86]
Liang, J.; Kwok, R.T.K.; Shi, H.; Tang, B.Z.; Liu, B. Fluorescent light-up probe with aggregation-induced emission characteristics for alkaline phosphatase sensing and activity study. ACS Appl. Mater. Interfaces, 2013, 5(17), 8784-8789.
[http://dx.doi.org/10.1021/am4026517] [PMID: 23957823]
[87]
Wang, J.; Yan, Y.; Yan, X.; Hu, T.; Tang, X.; Su, X. Label-free fluorescent assay for high sensitivity and selectivity detection of acid phosphatase and inhibitor screening. Sens. Actuators B Chem., 2016, 234, 470-477.
[http://dx.doi.org/10.1016/j.snb.2016.05.024]
[88]
Butler, S.J. Ratiometric detection of adenosine triphosphate (ATP) in water and real-time monitoring of apyrase activity with a tripodal zinc complex. Chemistry, 2014, 20(48), 15768-15774.
[http://dx.doi.org/10.1002/chem.201404499] [PMID: 25303281]
[89]
Zhou, Q.; Lin, Y.; Xu, M.; Gao, Z.; Yang, H.; Tang, D. Facile synthesis of enhanced fluorescent gold-silver bimetallic nanocluster and its application for highly sensitive detection of inorganic pyrophosphatase activity. Anal. Chem., 2016, 88(17), 8886-8892.
[http://dx.doi.org/10.1021/acs.analchem.6b02543] [PMID: 27476555]
[90]
Tang, C.; Qian, Z.; Huang, Y.; Xu, J.; Ao, H.; Zhao, M.; Zhou, J.; Chen, J.; Feng, H. A fluorometric assay for alkaline phosphatase activity based on β-cyclodextrin-modified carbon quantum dots through host-guest recognition. Biosens. Bioelectron., 2016, 83, 274-280.
[http://dx.doi.org/10.1016/j.bios.2016.04.047] [PMID: 27132001]
[91]
Li, L.; Shen, X.; Xu, Q.H.; Yao, S.Q. A switchable two-photon membrane tracer capable of imaging membrane-associated protein tyrosine phosphatase activities. Angew. Chem. Int. Ed. Engl., 2013, 52(1), 424-428.
[http://dx.doi.org/10.1002/anie.201205940] [PMID: 23037766]
[92]
Ma, C.; Tan, H.; Chen, L.; Song, Y.; Xu, F.; Chen, S.; Wang, L. A terbium chelate based fluorescent assay for alkaline phosphatase in biological fluid. Sens. Actuators B Chem., 2014, 202, 683-689.
[http://dx.doi.org/10.1016/j.snb.2014.06.007]
[93]
Han, X.; Huang, Y.; Zhang, R.; Xiao, S.; Zhu, S.; Qin, N.; Hong, Z.; Wei, L.; Feng, J.; Ren, Y.; Feng, L.; Wan, J. New insight into the binding modes of TNP-AMP to human liver fructose-1,6-bisphosphatase. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 165, 155-160.
[http://dx.doi.org/10.1016/j.saa.2016.04.002] [PMID: 27137358]
[94]
Sparks, J.L.; Kumar, R.; Singh, M.; Wold, M.S.; Pandita, T.K.; Burgers, P.M. Human exonuclease 5 is a novel sliding exonuclease required for genome stability. J. Biol. Chem., 2012, 287(51), 42773-42783.
[http://dx.doi.org/10.1074/jbc.M112.422444] [PMID: 23095756]
[95]
III D., M. W.; Barsky, D. The major human abasic endonuclease: formation, consequences and repair of abasic lesions in DNA. Mutat. Res., 2001, (485), 283-307.
[96]
Bencharit, S.; Edwards, C. C.; Morton, C. L.; Howard-Williams, E. L.; Kuhn, P. Multisite promiscuity in the processing of endogenous substrates by human carboxylesterase 1 J. Mol. Biol,, 2006, 201-214.(363).
[97]
Wang, X.; Liu, H.; Li, J.; Ding, K.; Lv, Z.; Yang, Y.; Chen, H.; Li, X. A fluorogenic probe with aggregation-induced emission characteristics for carboxylesterase assay through formation of supramolecular microfibers. Chem. Asian J., 2014, 9(3), 784-789.
[http://dx.doi.org/10.1002/asia.201301326] [PMID: 24403215]
[98]
Holmes, R.S.; Cox, L.A.; Vandeberg, J.L. Bovine carboxylesterases: Evidence for two CES1 and five families of CES genes on chromosome 18. Comp. Biochem. Physiol. Part D Genomics Proteomics, 2009, 4(1), 11-20.
[http://dx.doi.org/10.1016/j.cbd.2008.09.002] [PMID: 20161341]
[99]
Fang, S.; Chen, L.; Zhao, M. Unimolecular chemically modified DNA fluorescent probe for one-step quantitative measurement of the activity of human apurinic/apyrimidinic endonuclease 1 in biological samples. Anal. Chem., 2015, 87(24), 11952-11956.
[http://dx.doi.org/10.1021/acs.analchem.5b03939] [PMID: 26605979]
[100]
He, H.Z.; Chan, W.I.; Mak, T.Y.; Liu, L.J.; Wang, M.; Chan, D.S.; Ma, D.L.; Leung, C.H. Detection of 3′→5′ exonuclease activity using a metal-based luminescent switch-on probe. Methods, 2013, 64(3), 218-223.
[http://dx.doi.org/10.1016/j.ymeth.2013.08.011] [PMID: 23973810]
[101]
Xu, M.; Li, B. Label-free fluorescence strategy for sensitive detection of exonuclease activity using SYBR Green I as probe. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 151, 22-26.
[http://dx.doi.org/10.1016/j.saa.2015.06.052] [PMID: 26117197]
[102]
Liu, Z.; Feng, L.; Hou, J.; Lv, X.; Ning, J.; Ge, G.; Wang, K.; Cui, J.; Yang, L. A ratiometric fluorescent sensor for highly selective detection of human carboxylesterase 2 and its application in living cells. Sens. Actuators B Chem., 2014, 205, 151-157.
[http://dx.doi.org/10.1016/j.snb.2014.08.066]
[103]
Wang, X.; Liu, H.; Li, J.; Ding, K.; Lv, Z.; Yang, Y.; Chen, H.; Li, X. A fluorogenic probe with aggregation-induced emission characteristics for carboxylesterase assay through formation of supramolecular microfibers. Chem. Asian J., 2014, 9(3), 784-789.
[http://dx.doi.org/10.1002/asia.201301326] [PMID: 24403215]
[104]
Jin, Q.; Feng, L.; Wang, D.D.; Wu, J.J.; Hou, J.; Dai, Z.R.; Sun, S.G.; Wang, J.Y.; Ge, G.B.; Cui, J.N.; Yang, L. A highly selective near-infrared fluorescent probe for carboxylesterase 2 and its bioimaging applications in living cells and animals. Biosens. Bioelectron., 2016, 83, 193-199.
[http://dx.doi.org/10.1016/j.bios.2016.04.075] [PMID: 27129028]
[105]
Liu, Z.M.; Feng, L.; Ge, G.B.; Lv, X.; Hou, J.; Cao, Y-F.; Cui, J-N.; Yang, L. A highly selective ratiometric fluorescent probe for in vitro monitoring and cellular imaging of human carboxylesterase 1. Biosens. Bioelectron., 2014, 57, 30-35.
[106]
Mao, W.; Xia, L.; Wang, Y.; Xie, H.A. Self-immobilizing and fluorogenic probe for β-lactamase detection. Chem. Asian J., 2016, 11(24), 3493-3497.
[http://dx.doi.org/10.1002/asia.201601344] [PMID: 27790857]
[107]
Shi, H.; Cheng, Y.; Lee, K.H.; Luo, R.F.; Banaei, N.; Rao, J. Engineering the stereochemistry of cephalosporin for specific detection of pathogenic carbapenemase-expressing bacteria. Angew. Chem. Int. Ed. Engl., 2014, 53(31), 8113-8116.
[http://dx.doi.org/10.1002/anie.201402012] [PMID: 24764125]
[108]
Zhang, J.; Li, C.; Dutta, C.; Fang, M.; Zhang, S.; Tiwari, A.; Werner, T.; Luo, F.T.; Liu, H. A novel near-infrared fluorescent probe for sensitive detection of β-galactosidase in living cells. Anal. Chim. Acta, 2017, 968, 97-104.
[http://dx.doi.org/10.1016/j.aca.2017.02.039] [PMID: 28395779]
[109]
Chang, J.; Li, H.; Hou, T.; Li, F. Paper-based fluorescent sensor for rapid naked-eye detection of acetylcholinesterase activity and organophosphorus pesticides with high sensitivity and selectivity. Biosens. Bioelectron., 2016, 86, 971-977.
[http://dx.doi.org/10.1016/j.bios.2016.07.022] [PMID: 27498323]
[110]
Sun, J.; Yang, X. Gold nanoclusters-Cu(2+) ensemble-based fluorescence turn-on and real-time assay for acetylcholinesterase activity and inhibitor screening. Biosens. Bioelectron., 2015, 74, 177-182.
[http://dx.doi.org/10.1016/j.bios.2015.06.013] [PMID: 26141104]
[111]
Shi, J.; Zhang, S.; Zheng, M.M.; Deng, Q.C.; Zheng, C.; Li, J.; Huang, F.H. A novel fluorometric turn-on assay for lipase activity based on anaggregation-induced emission (AIE) luminogen. Sens. Actuators B Chem., 2017, 238, 765-771.
[http://dx.doi.org/10.1016/j.snb.2016.07.116]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy