[1]
Lukic, M.; Pantelic, I.; Savic, S. An Overview of Novel Surfactants for Formulation of Cosmetics with Certain Emphasis on Acidic Active Substances. Tenside Surf. Det., 2016, 53, 7-19.
[3]
Florence, A.T.; Attwood, D. Surfactants. In:Physicochemical Principles of Pharmacy, 4th ed; Pharmaceutical Press: London, 2006, pp. 177-228.
[4]
Mollica, A.; Macedonio, G.; Stefanucci, A.; Constante, R.; Carradori, S.; Cataldi, V.; Di Giulio, M.; Cellini, L.; Silvestri, R.; Giordano, C.; Scipioni, A.; Morosetti, S.; Punzi, P.; Mirzaie, S. Arginine- and lysine- rich peptides: synthesis, characterization and antimicrobial activity. Lett. Drug Des. Discov., 2017, 14, 1-7.
[5]
Pinazo, A.; Manresa, M.A.; Marques, A.M.; Bustelo, M.; Espuny, M.J.; Pérez, L. Amino acid-based surfactants: New antimicrobial agents. Adv. Colloid Interface Sci., 2016, 228, 17-39.
[6]
Singh, A.; Tyagi, V.K. Arginine based novel cationic surfactants: a review. Tenside Surf. Det., 2015, 51, 202-214.
[7]
Loeffler, M.; McClements, D.J.; McLandsborough, L.; Terjung, N.; Chang, Y.; Weiss, J. Electrostatic interactions of cationic lauric arginate with anionic polysaccharides affect antimicrobial activity against spoilage yeasts. J. Appl. Microbiol., 2014, 117(1), 28-39.
[8]
Pérez, L.; Pinazo, A.; Pons, R.; Infante, M. Gemini surfactants from natural amino acids. Adv. Colloid Interface Sci., 2014, 205, 134-155.
[9]
Infante, M.R.; Pérez, L.; Morán, C.; Pons, R.; Pinazo, A. Synthesis,
aggregation properties and applications of biosurfactants derived
from arginine. In: Biobased surfactants and detergents. Synthesis, properties and applications; Hayes D.G.; Kitamoto, D.; Solaiman,
D.K.Y.; Ashby, R.D. Ed., 1st Edition; AOCS Press: Urbana, Illinois,
2009; pp. 374-380.
[10]
Fait, M.E.; Garrote, G.L.; Clapés, P.; Tanco, S.; Lorenzo, J.; Morcelle, S.R. Biocatalytic synthesis, antimicrobial properties and toxicity studies of arginine derivative surfactants. Amino Acids, 2015, 47(7), 1465-1477.
[11]
Obłąk, E.; Piecuch, A.; Krasowska, A.; Luczyński, J. Antifungal activity of gemini quaternary ammonium salts. Microbiol. Res., 2013, 168(10), 630-638.
[12]
Kanjilal, S.; Sunitha, S.; Reddy, P.S.; Kumar, K.P.; Murty, U.S.N.; Prasad, R.N.B. Synthesis and evaluation of micellar properties and antimicrobial activities of imidazole-based surfactants. Eur. J. Lipid Sci. Technol., 2009, 111, 941-948.
[13]
Badawi, A.M.; Mekawi, M.A.; Mohamed, A.S.; Mohamed, M.Z.; Kowdairy, M.M. Surface and biological activity of some novel cationic surfactants. J. Surfact. Det., 2007, 10, 243-255.
[14]
Vieira, D.B.; Carmona-Ribeiro, A.M. Cationic lipids and surfactants as antifungal agents: mode of action. J. Antimicrob. Chemother., 2006, 58(4), 760-767.
[15]
Ziani, K.; Chang, Y.; McLandsborough, L.; McClements, D.J. Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions. J. Agric. Food Chem., 2011, 59(11), 6247-6255.
[16]
Murguía, M.C.; Vaillard, V.A.; Sánchez, V.G.; Conza, J.D.; Grau, R.J. Synthesis, surface-active properties, and antimicrobial activities of new double-chain gemini surfactants. J. Oleo Sci., 2008, 57(5), 301-308.
[17]
Castillo, J.A.; Infante, M.R.; Manresa, A.; Vinardell, M.P.; Mitjans, M.; Clapés, P. Chemoenzymatic synthesis and antimicrobial and haemolytic activities of amphiphilic bis(phenylacetylarginine) derivatives. ChemMedChem, 2006, 1(10), 1091-1098.
[18]
Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: human fungal infections. Sci. Transl. Med., 2012, 4(165), 165rv13.
[19]
Kistler, H.C.; Alabouvette, C.; Baayen, R.P.; Bentley, S.; Brayford, D.; Coddington, A.; Correll, J.; Daboussi, M-J.; Elias, K.; Fernandez, D.; Gordon, T.R.; Katan, T.; Kim, H.G.; Leslie, J.F.; Martyn, R.D.; Migheli, Q.; Moore, N.Y.; O’Donnell, K.; Ploetz, R.C.; Rutherford, M.A.; Summerell, B.; Waalwijk, C.; Woo, S. Systematic numbering of vegetative compatibility groups in the plant pathogenic fungus Fusarium oxysporum. Phytopathology, 1998, 88(1), 30-32.
[20]
Lim, H-S.; Kim, Y-S.; Kim, S-D. Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl. Environ. Microbiol., 1991, 57(2), 510-516.
[21]
Podila, G.K.; Rogers, L.M.; Kolattukudy, P.E. Chemical signals from avocado surface wax trigger germination and appressorium formation in Colletotrichum gloeosporioides. Plant Physiol., 1993, 103(1), 267-272.
[22]
Balardin, R.S.; Jarosz, A.M.; Kelly, J.D. Virulence and Molecular Diversity in Colletotrichum lindemuthianum from South, Central, and North America. Phytopathology, 1997, 87(12), 1184-1191.
[23]
Patiny, L.; Borel, A. ChemCalc: a building block for tomorrow’s chemical infrastructure. J. Chem. Inf. Model., 2013, 53(5), 1223-1228.
[24]
Broekaert, W.F.; Terras, F.R.G.; Cammue, B.P.A.; Vanderleyden, J. An automated quantitative assay for fungal growth inhibition. FEMS Microbiol. Lett., 1990, 69, 55-59.
[25]
Ji, C.; Kuć, J. Antifungal activity of cucumber β-1,3-glucanase and chitinase. Physiol. Mol. Plant Pathol., 1996, 49, 257-265.
[26]
de Freitas, C.D.T.; Lopes, J.L.S.; Beltramini, L.M.; de Oliveira, R.S.B.; Oliveira, J.T.A.; Ramos, M.V. Osmotin from Calotropis procera latex: new insights into structure and antifungal properties. Biochim. Biophys. Acta, 2011, 1808(10), 2501-2507.
[27]
Thordal-Christensen, H.; Zhang, Z.; Wei, Y.; Collinge, D.B. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J., 1997, 11, 1187-1194.
[28]
Pereira, F.O.; Wanderley, P.A.; Viana, F.A.C.; de Lima, R.B.; de Sousa, F.B.; dos Santos, S.G.; Lima, E.O. Effects of Cymbopogon winterianus Jowitt ex Bor essential oil on the growth and morphogenesis of Trichophyton mentagrophytes. Braz. J. Pharm. Sci., 2011, 47, 145-153.
[29]
Santos, D.A.; Barros, M.E.S.; Hamdan, J.S. Establishing a method of inoculum preparation for susceptibility testing of Trichophyton rubrum and Trichophyton mentagrophytes. J. Clin. Microbiol., 2006, 44(1), 98-101.
[30]
Barchiesi, F.; Arzeni, D.; Camiletti, V.; Simonetti, O.; Cellini, A.; Offidani, A.M.; Scalise, G. In vitro activity of posaconazole against clinical isolates of dermatophytes. J. Clin. Microbiol., 2001, 39(11), 4208-4209.
[31]
Santos, D.A.; Hamdan, J.S. Evaluation of broth microdilution antifungal susceptibility testing conditions for Trichophyton rubrum. J. Clin. Microbiol., 2005, 43(4), 1917-1920.
[32]
Morán, M.C.; Clapés, P.; Comelles, F.; García, T.; Pérez, L.; Vinardell, P.; Mitjans, M.; Infante, M.R. Chemical structure/property relationship in single-chain arginine surfactants. Langmuir, 2001, 17, 5071-5075.
[33]
Huang, M.; Hebert, A.S.; Coon, J.J.; Hull, C.M. Protein composition of infectious spores reveals novel sexual development and germination factors in Cryptococcus. PLoS Genet., 2015, 11(8), e1005490.
[34]
Chitarra, G.S.; Breeuwer, P.; Nout, M.J.R.; van Aelst, A.C.; Rombouts, F.M.; Abee, T. An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores. J. Appl. Microbiol., 2003, 94(2), 159-166.
[35]
Mesquita, N.; Portugal, A.; Piñar, G.; Loureiro, J.; Coutinho, A.P.; Trovão, J.; Nunes, I.; Botelho, M.L.; Freitas, H. Flow cytometry as a tool to assess the effects of gamma radiation on the viability, growth and metabolic activity of fungal spores. Int. Biodeterior. Biodegradation, 2013, 84, 250-257.
[36]
Carmona-Ribeiro, A.M.; Carrasco, L.D.M. Fungicidal assemblies and their mode of action. OA Biotechnology, 2013, 2, 25.
[37]
Vieira, O.V.; Hartmann, D.O.; Cardoso, C.M.P.; Oberdoerfer, D.; Baptista, M.; Santos, M.A.S.; Almeida, L.; Ramalho-Santos, J.; Vaz, W.L.C. Surfactants as microbicides and contraceptive agents: a systematic in vitro study. PLoS One, 2008, 3(8), e2913.
[38]
Nakata, K.; Tsuchido, T.; Matsumura, Y. Antimicrobial cationic surfactant, cetyltrimethylammonium bromide, induces superoxide stress in Escherichia coli cells. J. Appl. Microbiol., 2011, 110(2), 568-579.
[39]
Yu, Q.; Zhang, B.; Ma, F.; Jia, C.; Xiao, C.; Zhang, B.; Xing, L.; Li, M. Novel mechanisms of surfactants against Candida albicans growth and morphogenesis. Chem. Biol. Interact., 2015, 227, 1-6.
[40]
Nordberg, J.; Arnér, E.S.J. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med., 2001, 31(11), 1287-1312.