[1]
Al-Dosari, M.S.; Gao, X. Non-viral gene delivery: Principle, limitations and recent progress. AAPS J., 2009, 11(4), 671-681.
[2]
Niidome, T.; Huang, L. Gene therapy progress and prospects: Nonviral vectors. Gene Ther., 2002, 9, 1647-1652.
[3]
Ramamoorth, M.; Narvekar, A. Non-viral vectors in gene therapy-an overview. J. Clin. Res., 2015, 9(1), GE01-GE06.
[5]
Herwiger, H.; Wolff, J.A. Progress and prospects: Naked gene transfer and therapy. Gene Ther., 2003, 10, 453-458.
[6]
Klein, R.M.; Wolf, E.D.; Wu, R.; Sanford, J.C. High velocity micro-projectiles for delivering nucleic acids into living cells. Biotechnology, 1992, 24, 384-386.
[7]
Uchida, M.; Natsume, H.; Kobayashi, D.; Sugibayashi, K.; Morimoto, Y. Effects of particle size, helium gas pressure and microparticle dose on the plasma concentration of indomethacin after bombardment of indomethacin loaded poly-L-lactic acid microspheres using a Helios gun system. Biol. Pharm. Bull., 2002, 25, 690-693.
[8]
Li, S.D.; Huang, S.L. Gene therapy progress and prospects: Decade strategy. Gene Ther., 2006, 13, 1313-1319.
[9]
Neumann, E.; Schaefer-Ridder, M.; Wang, Y.; Hofschneider, P.H. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J., 1982, 1, 841-845.
[10]
Titomirov, A.V.; Sukharev, S.; Kistanova, E. In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim. Biophys. Acta, 1991, 1088, 131-134.
[11]
Marti, G.; Ferguson, M.; Wang, J.; Byrnes, C.; Dieb, R.; Qaiser, R.; Bonde, P.; Duncan, M.D.; Harmon, J.W. Electroporative transfection with KGF-1 DNA improves wound healing in a diabetic mouse model. Gene Ther., 2004, 11, 1780-1785.
[12]
Drabick, J.J.; Glasspool, M.J.; King, A.; Malone, R.W. Cutaneous transfection and immune responses to intradermal nucleic acid vaccination are significantly enhanced by in vivo electropermeabilization. Mol. Ther., 2001, 3, 249-255.
[13]
Maruyama, H.; Ataka, K.; Higuchi, F.; Sakamoto, F.; Gejyo, F.; Miyazaki, J. Skin targeted gene transfer using in vivo electroporation. Gene Ther., 2001, 8, 1808-1812.
[14]
Widera, G.; Austin, M.; Rabussay, D.; Goldbeck, C.; Barnett, S.W.; Chen, M.; Leung, L.; Otten, G.R.; Thudium, K.; Selby, M.J.; Ulmer, J.B. Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J. Immunol., 2000, 164, 4635-4640.
[15]
Murakami, T.; Sunada, Y. Plasmid DNA gene therapy by electroporation: principles and recent advances. Curr. Gene Ther., 2011, 11(6), 447-456.
[16]
Chalberg, T.W.; Vankov, A.; Molnar, F.E.; Butterwick, A.F.; Huie, P.; Calos, M.P.; Palanker, D.V. Gene transfer to rabbit retina with electron avalanche transfection. Invest. Ophthalmol. Vis. Sci., 2006, 47(9), 4083-4090.
[17]
TerHaar, G. therapeutic applications of ultrasound. Prog. Biophys. Mol. Biol., 2007, 93, 111-129.
[18]
Kim, H.J.; Greenleaf, J.F.; Kinnick, R.R.; Bronk, J.T.; Bolander, M.E. Ultrasound mediated transfection of mammalian cells. Hum. Gene Ther., 1996, 7, 1339-1346.
[19]
Endoh, M.; Koibuchi, N.; Sato, M.; Morishita, R.; Kanzaki, T.; Murata, Y.; Kaneda, Y. Fetal gene transfer by intrauterine injection with microbubble-enhanced ultrasound. Mol. Ther., 2002, 5, 501-508.
[20]
Newman, C.M.; Bettinger, T. Gene therapy progress and prospects: Ultrasound for gene transfer. Gene Ther., 2007, 14(6), 465-475.
[21]
Tsunoda, S.; Mazda, O.; Oda, Y.; Ida, Y.; Akabame, S.; Kishida, T.; Shin-Ya, M.; Asada, H.; Gojo, S.; Imanishi, J.; Matsubara, H.; Yoshikawa, T. Sonoporation using microbubble using BR14 promotes pDNA/siRNA transduction to murine heart. Biochem. Biophys. Res. Commun., 2005, 336, 118-127.
[22]
Tan, J.K.; Pham, B.; Zong, Y.; Perez, C.; Maris, D.O.; Hemphill, A.; Miao, C.H.; Matula, T.J.; Mourad, P.D.; Wei, H.; Sellers, D.L.; Horner, P.J.; Pun, S.H. Microbubbles and ultrasound increase intraventricularpolyplex gene transfer to the brain. J. Control. Release, 2016, 231, 86-93.
[23]
Lu, F.; Song, Y.; Liu, D. Hydrodynamics based transfection in animals by systematic administration of plasmid DNA. Gene Ther., 1999, 6, 1258-1266.
[24]
Zhang, G.; Gao, X.; Song, Y.K.; Vollmer, R.; Stolz, D.B.; Gasiorowski, J.Z.; Dean, D.A.; Liu, D. Hydroporation as the mechanism of hydrodynamic delivery. Gene Ther., 2004, 11, 675-682.
[25]
Herweiger, H.; Wolff, J.A. Progress and prospects: Hydrodynamic gene delivery. Gene Ther., 2006, 14, 99-107.
[26]
Eastman, S.J.; Baskin, K.M.; Hodges, B.L.; Chu, Q.; Gates, A.; Dreusicke, R.; Anderson, S.; Scheule, R.K. Development of catheter-based procedures for transducing the isolated rabbit liverwith plasmid DNA. Hum. Gene Ther., 2002, 13, 2065-2077.
[27]
Dizaj, S.M.; Jafari, S.; Khosroushahi, A.Y. A sight on the current nanoparticle-based gene delivery vectors. Nanoscale Res. Lett., 2014, 9, 1-9.
[28]
Jin, L.; Zeng, X.; Liu, M.; Deng, Y.; He, N. Current progress in gene delivery technology based on chemical methods and nano carriers. Theranostics, 2014, 4(3), 240-255.
[29]
Su, C.H.; Wu, Y.J.; Wang, H.H.; Yeh, H.I. Non-viral gene therapy targeting cardiovascularsystem. Am. J. Physiol. Heart Circ. Physiol., 2012, 303, 629-638.
[30]
Graham, F.L.; Van der Eb, A.J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology, 1973, 52(2), 456-467.
[31]
Cao, X.; Deng, W.; Wei, Y.; Su, W.; Yang, Y.; Wei, Y.; Yu, J.; Xu, X. Encapsulation of plasmid DNAin calcium phosphate nanoparticles: Stem cells uptake and gene transfer efficiency. Int. J. Nanomedicine, 2011, 6, 3335-3349.
[32]
Hu, J.; Kovtun, A.; Tomaszewski, A.; Singer, B.B.; Seitz, B.; Epple, M.; Steuhl, K.P.; Ergun, S.; Fuchsluger, T.A. A new tool for the transfection of corneal endothelial cells: Calcium phosphate nanoparticles. Acta Biomater., 2012, 8(3), 1156-1163.
[33]
Shekhar, S.; Roy, A.; Honq, D.; Kumta, P.N. Nanostructured silicate substituted calcium phosphate (NanoSiCaPs) nanoparticles-efficient calcium phosphate based non-viral gene delivery systems. Mater. Sci. Eng. C Mater. Biol. Appl., 2016, 69, 489-495.
[34]
Zhou, J.; Deng, W.; Wang, Y.; Cao, X.; Chen, J.; Wang, Q.; Xu, W.; Du, P.; Yu, Q.; Chen, J.; Spector, M.; Yu, J.; Xu, X. Cationic carbon quantum dots derived from alginate for gene delivery: One step synthesis and cellular uptake. Acta Biomaterialia., 2016, 42, 209-219.
[35]
Kneuer, C.; Sameti, M.; Bakowsky, U.; Schiestel, T.; Schirra, H.; Schmidt, H.; Lehr, C.M. A non viral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconj. Chem., 2000, 11(6), 926-932.
[36]
Csogor, Z.; Nacken, M.; Sameti, M.; Lehr, C.M.; Scimdt, H. Modified silica particlesfor gene delivery. Mat. Sci. Eng. C, 2003, 23, 93-97.
[37]
Sandhu, K.K.; Mcintosh, C.M.; Simard, J.M.; Smith, S.W.; Rotello, V.M. Gold nanoparticle-mediated transfection of mammalian cells. Bioconjug. Chem., 2002, 13, 3-6.
[38]
Thomas, M.; Klibanov, A.M. Conjugation to gold nanoparticles enhances polyethylenimine,s transfer of plasmid DNA into mammalian cells. Proc. Natl. Acad. Sci. USA, 2002, 100, 9138-9143.
[39]
Tsai, C.Y.; Shiau, A.L.; Cheng, P.C.; Shieh, D.B.; Chen, D.H.; Chou, C.H.; Yeh, C.H.; Wu, C.L. A biological strategy for fabrication of Au/EGFP nanoparticle conjugates retaining bioactivity. Nano Lett., 2004, 4, 1209-1212.
[40]
Singh, R.; Pantarotto, D.; McCarthy, D.; Chaloin, O.; Hoebeke, J. Binding and condensation of plasmid DNAonto functionalized carbon nanotubes: Toward the construction of nanotube based gene delivery vectors. J. Am. Chem. Soc., 2005, 127, 4388-4396.
[41]
Liu, Y.; Wu, D.C.; Zhang, W.E.; Jiang, X.; He, C.B.; Partidos, C.D.; Briand, J.P.; Prato, M.; Bianco, A.; Kostarelos, K. Polyethylenimine grafted multiwalled carbon nanotubes for secure non covalent immobilization and efficient delivery of DNA. Angew. Chem. Int. Ed., 2005, 44, 4782-4785.
[42]
Kakizawa, Y.; Miyata, K.; Furukawa, S.; Kataoka, K. Size controlled formation of a calcium phosphate based organic -inorganic hybrid vector for gene delivery using poly (ethylene glycol)-block -poly (aspartic acid). Adv. Mater., 2004, 16, 699-702.
[43]
Fraley, R.; Subramani, S.; Berg, P.; Papahadijopoulos, D. Introduction of liposome-encapsulated SV40 DNA into cells. J. Biol. Chem., 1980, 255, 10431-10435.
[44]
Wasungu, L.; Hoekstra, D. Cationic lipids, lipoplexes and intracellular delivery of genes. J. Control. Release, 2006, 116, 255-264.
[45]
Whitehead, K.A.; Langer, R.; Anderson, D.G. Knocking down barriers: Advances in siRNAdelivery. Nat. Rev. Drug Discov., 2009, 8, 129-138.
[46]
Lonez, C.; Vandenbranden, M.; Ruysschaert, J.M. Cationic liposomal lipids: From gene carriers to cell signalling. Prog. Lipid Res., 2008, 47, 340-347.
[47]
Hersey, P.; Gallagher, S. Intralesional immunotherapy for melanoma. J. Surg. Oncol., 2014, 109, 320-326.
[48]
Olins, D.E.; Olins, A.L.; Von Hippel, P.H. Model nucleoprotein complexes: studies on the interaction of cationic homopolypeptides with DNA. J. Mol. Biol., 1967, 24, 157-176.
[49]
Laemmli, U.K. Characterization of DNA condensates induced by poly (ethylene oxide) and polylysine. Proc. Natl. Acad. Sci. USA, 1975, 72, 4288-4292.
[50]
Wu, G.Y.; Wu, C.H. Receptor mediated in vitro gene transformation by a soluble DNA carrier system. J. Biol. Chem., 1987, 262, 4429-4432.
[51]
Choi, Y.H.; Liu, F.; Kim, J.S.; Choi, Y.K.; Park, J.S.; Kim, S.W. Polyethylene glycol-grafted poly-L-lysine as polymeric gene carrier. J. Control. Release, 1998, 54, 39-48.
[52]
Kim, S.W. Polylysine copolymers for gene delivery. Cold Spring Harb. Protoc., 2012, 433-438.
[53]
Alexis, F.; Pridgen, E.; Molnar, L.K.; Farokhzad, O.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm., 2008, 5, 505-515.
[54]
Bazile, D.; Prud’homme, C.; Bassoullet, M.T.; Marlard, M.; Spenlehauer, G.; Veillard, M.; Me, S. PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J. Pharm. Sci., 1995, 84, 493-498.
[55]
Konstan, M.W.; Davis, P.B.; Wagener, J.S.; Hilliard, K.A.; Stern, R.C.; Milgram, L.J.; Kowalczyk, T.H.; Hyatt, S.L.; Fink, T.L.; Gedeon, C.R.; Oette, S.M.; Payne, J.M.; Muhammad, O.; Ziady, A.G.; Moen, R.C.; Cooper, M.J. Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Hum. Gene Ther., 2004, 15, 1255-1269.
[56]
Lungwitz, U.; Breunig, M.; Blunk, T.; Gopferich, A. Polyethylenimine-based non-viral gene delivery systems. Eur. J. Pharm. Biopharm., 2005, 60, 247-266.
[57]
Gosangi, M.; Mujahid, T.H.; Gopal, V.; Patri, S.V. Effect of heterocyclic-based head group modifications on the structure-activity relationship of tocopherol-based lipids for non-viral gene delivery. Org. Biomol. Chem., 2016, 14, 6857-6870.
[58]
Meissner, J.M.; Toporkiewicz, M.; Czogalla, A.; Matusewicz, L.; Kuliczkowski, K.; Sikorski, A.F. Novel antisense therapeutics delivery systems: in vitro and in vivo studies of liposomes targeted with anti-CD20 antibody. J. Control. Release, 2015, 220, 515-528.
[59]
Das, J.; Han, J.W.; Choi, Y.J.; Song, H.; Cho, S.G.; Park, C.; Seo, H.G.; Kim, J.H. Cationic lipid-nanoceria hybrids, a novel non-viral vector-mediated gene delivery into mammalian cells: Investigation of the cellular uptake mechanism. Sci. Reports., 2016, 1-13.
[60]
Li, W.; Szoka, F.C., Jr Lipid based nanoparticles for nucleic acid delivery. Pharm. Res., 2007, 24, 438-449.
[61]
Durcan, N.; Murphy, C.; Cryan, S.A. Inhalable siRNA: Potential as a therapeutic agent in the lungs. Mol. Pharm., 2008, 5, 559-566.
[62]
Farjo, R.; Skaggs, J.; Quiambao, A.B.; Cooper, M.J.; Naash, M.I. Efficient non-viral ocular gene transfer with compacted DNA nanoparticles PLoS ONE., 2006, 1e38 1-8.
[63]
Warashina, S.; Nakamura, T.; Sato, Y.; Fujiwara, Y.; Hyodo, M.; Hiroto, H.; Harashima, H. A lipid nanoparticle for the efficient delivery of siRNA to dendritic cells. J. Control. Release, 2016, 225, 183-191.
[64]
Wang, Y.; Rajala, A.; Cao, B.; Ranjo-Bishop, M.; Agbaga, M.P.; Mao, C.; Rajala, R.V.S. Cell specific promoters enable lipid based nanoparticles to deliver genes to specific cells of the retina in vivo. Theranostics, 2016, 6(10), 1514-1527.
[65]
Felgner, P.L.; Gadek, T.R.; Holm, M.; Roman, R.; Chan, H.W.; Wenz, M. Lipofection: A highly efficient, lipid mediated DNA transfection procedure. Proct. Natl. Acad. Sci. USA, 1987, 84, 7413-7417.
[66]
Del Pozo Rodriquez, A.; Solinis, M.A.; Rodriquez-Gascon, A. Applications of lipid nanoparticles in gene therapy. Eur. J. Pharm. Bioparm., 2016, 109, 184-193.
[67]
Li, W.B.; Yuan, W.; Xu, F.J.; Zhao, C.; Ma, J.; Zhan, Q.M. Functional study of dextran-graft-poly ((2-dimethyl amino) ethyl methacrylate) gene delivery vector for tumor therapy. J. Biomater. Appl., 2013, 28, 125-135.
[68]
Wang, Y.Q.; Su, J.; Wu, F.; Lu, P.; Yuan, L.F.; Yuan, W.E.; Sheng, J.; Jin, T. Biscarbamate cross-linked polyethylenimine derivative with low molecular weight, low cytotoxicity, and high efficiency for gene delivery. Int. J. Nanomed., 2012, 7, 693-704.
[69]
Zhou, J.; Liu, J.; Cheng, C.J.; Patel, T.R.; Weller, C.E.; Piepmeier, J.M.; Jiang, Z.; Saltzman, W.M. Biodegradable poly (amine-co-ester) terpolymers for targeted gene delivery. Nat. Mater., 2012, 11, 82-90.
[70]
Choi, J.S.; Nam, K.; Park, J.Y.; Kim, J.B.; Lee, J.K.; Park, J.S. Enhanced transfection efficiency of PAMAM dendrimer by surface modification with l-arginine. J. Control. Release, 2004, 99, 445-456.
[71]
Pfeifer, B.A.; Burdick, J.A.; Little, S.R.; Langer, R. Poly (ester-anhydride): poly (beta-amino ester) micro- and nanospheres: DNA encapsulation and cellular transfection. Int. J. Pharm., 2005, 304, 210-219.
[72]
Anderson, D.G.; Akinc, A.; Hossain, N.; Langer, R. Structure/property studies of polymeric gene delivery using a library of poly (beta-amino esters). Mol. Ther., 2005, 11, 426-434.
[73]
Hwang, S.J.; Bellocq, N.C.; Davis, M.E. Effects of structure of beta-cyclodextrin-containing polymers on gene delivery. Bioconj. Chem., 2001, 12, 280-290.
[74]
Kean, T.; Roth, S.; Thanou, M. Trimethylatedchitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J. Control. Release, 2005, 103, 643-653.
[75]
Chandy, T.; Sharma, C.P. Chitosan - as a biomaterial. Biomater. Artif. Cells Artif. Organs, 1990, 18, 1-24.
[76]
Rinaudo, M. Main properties and current applications of some polysaccharides as biomaterials. Polym. Int., 2008, 57, 397-430.
[77]
Mourya, V.K.; Inamdar, N.N. Chitosan-modifications and applications: Opportunities galore. React. Funct. Polym., 2008, 68, 1013-1051.
[78]
Howard, K.A.; Rahbek, U.L.; Liu, X.; Damgaard, C.K.; Glud, S.Z.; Andersen, M.O.; Hovgaard, M.B.; Schmitz, A.; Nyengaard, J.R.; Besenbacher, F.; Kjems, J. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol. Ther., 2006, 14, 476-484.
[79]
Lavertu, M.; Methot, S.; Tran-Khanh, N.; Buschmann, M.D. High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials, 2006, 27, 4815-4824.
[80]
Liu, C.C.; Zhu, Q.; Wu, W.H.; Xu, X.L.; Wang, X.Y.; Gao, S.; Liu, K.H. Degradable copolymer based on amphiphilic N-octyl-N-quatenary chitosan and low-molecular weight polyethylenimine for gene delivery. Int. J. Nanomed., 2012, 7, 5339-5350.
[81]
Boussif, O.; Lezoualc’h, F.; Zanta, M.A.; Mergny, M.D.; Scheman, D.; Demeneix, B.; Behr, J.P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA, 1995, 92, 7297-7301.
[82]
Godbey, W.T.; Wu, K.K.; Mikos, A.G. Size matters: molecular weight affects the efficiency of poly (ethylenimine) as a gene delivery vehicle. J. Biomed. Mater. Res., 1999, 45, 268-275.
[83]
Wightman, L.; Kircheis, R.; Rössler, V.; Carotta, S.; Ruzicka, R.; Kursa, M.; Wagner, E. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J. Gene Med., 2001, 3, 362-372.
[84]
Boch, J.; Scholze, H.; Schormack, S.; Landqraf, A.; Hahn, S.; Kay, S.; Lahaye, T.; Nickstadt, A.; Bonas, U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 2009, 326, 1509-1512.
[85]
Moscou, M.J.; Bogdanove, A.J. A simple cipher governs DNA recognition by TAL effectors. Science, 2009, 326, 1501.
[86]
Liu, S.; Zhou, D.; Yang, J.; Zhou, H.; Chen, J.; Guo, T. Bioreducible Zinc (II)-coordinative polyethylenimine with low molecular weight for robust gne delivery of primary and stem cells. J. Am. Chem. Soc., 2017. [Epub ahead of print].
[87]
Jiang, H.L.; Islam, M.A.; Xing, L.; Firdous, J.; Cao, W.; He, Y.J.; Zhu, Y.; Cho, K.H.; Cho, C.S. Degradable polyethylenimine-based gene carriers for cancer therapy. Top. Curr. Chem., 2017, 375, 34.
[88]
Li, L.; He, Z.Y.; Wei, X.W.; Wei, Y.Q. Recent advances of biomaterials in biotherapy. Regen. Biomater., 2016, 3(2), 99-105.
[89]
Mintzer, M.A.; Simanek, E.E. Nonviral vectors for gene delivery. Chem. Rev., 2009, 109(2), 259-302.
[90]
Yamagata, M.; Kawano, T.; Shiba, K.; Mori, T.; Katayama, Y.; Niidome, T. Structural advantage of dendritic poly (L-lysine) for gene delivery into cells. Bioorg. Med. Chem., 2007, 15, 526-532.
[91]
Bielinska, A.; Kukowskalatallo, J.; Piehler, L.T.; Yin, R.; Spindler, R.; Tomalia, D.A.; Baker, J.R. Starburst (R) PAMAM dendrimers - a novel synthetic vector for the transfection of DNA into mammalian cells. Am. Chem. Soc., 1995, 73, 273.
[92]
Shah, N.; Steptoe, R.J.; Parekh, H.S. Low-generation asymmetric dendrimers exhibit minimal toxicity and effectively complex DNA. J. Pept. Sci., 2011, 17, 470-478.
[93]
Pan, S.R.; Cao, D.W.; Huang, H.; Yi, W.; Qin, L.H.; Feng, M.A. Sserum-resistant low-generation polyamidoamine with PEI 423 outer layer for gene delivery vector. Macromol. Biosci., 2013, 13, 422-436.
[94]
Liu, H.M.; Wang, H.; Yang, W.J.; Cheng, Y.Y. Disulfide cross-linked low generation dendrimers with high gene transfection efficacy, low cytotoxicity, and low cost. J. Am. Chem. Soc., 2012, 134, 17680-17687.
[95]
leiro, V.; Santos, S.D.; and Peqo, A.P. Delivering siRNA with dendrimers: In vivo applications. Curr. Gene Ther., 2017, 17(2), 105-119.
[96]
Frankel, A.D.; Pabo, C.O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 1988, 55, 1189-1193.
[97]
El-Andaloussi, S.; Jarver, P.; Johansson, H.J.; Langel, U. Cargo-dependent cytotoxicity and delivery efficacy of cell penetrating peptides: A comparative study. Biochem. J., 2007, 407, 285-292.
[98]
Alhakamy, N.A.; Niqatu, A.S.; Berkland, C.J.; Ramsey, J.D. Noncovalently associated cell-penetrating peptides for gene delivery applications. Ther. Deliv., 2013, 4, 741-757.
[99]
Lehto, T.; Abes, R.; Oskolkov, N.; Suhorutsenko, J.; Copolovici, D.M.; Mager, I.; Viola, J.R.; Simonson, O.E.; Ezzat, K.; Guterstam, P.; Eriste, E.; Smith, C.I.E.; Lebleu, B.; ElAndaloussi, S.; Langel, U. Delivery of nucleic acids with a stearylated (RxR) (4) peptide using a non-covalent co-incubation strategy. J. Control. Release, 2010, 141, 42-51.
[100]
Yin, H.; Kanasty, R.L.; Ahmed, A.E.; Vegas, A.J.; Dorkin, R.; Anderson, D.G. Non-viral vectors for gene based therapies. Nat. Rev. Genet., 2014, 15, 541-555.
[101]
Izsvak, Z.; Chuah, M.K.L.; Vandendriessche, T.; Ivics, Z. Efficient stable gene transfer into human cells by the Sleeping Beauty transposon vectors. Methods San Diego Calif., 2009, 49, 287-297.
[102]
Jones, C.H.; Hill, A.; Chen, M.; Pfeifer, B.A. Contemporary approaches for non-viral Gene therapy. Discov. Med., 2015, 19, 447-454.
[103]
Cucchiarini, M. Human gene therapy: Novel approaches to improve the current gene delivery systems. Discov. Med., 2016, 21, 495-506.
[104]
Hill, A.B.; Chen, M.; Chen, C.K.; Pfeifer, B.A.; Jones, C.H. Overcoming gene delivery hurdles: Physiological considerations for non viral vectors. Trends Biotechnol., 2016, 34, 91-105.
[105]
Hardee, C.L.; Arevalo-Soliz, L.M.; Hornstein, B.D.; Zechiedrich, L. Advances in non-viral DNA vectors for gene therapy. Genes (Basel), 2017, 8, 1-22.
[106]
Riley, M.K. II; Vermerris, W. Recent advances in nanomaterials for gene delivery-a review. Nanomaterials., 2017, 7, 1-19.
[107]
Vaseqhi, G.; Rafiee, L.; Javanmard, S.H. Non-viral delivery systems for breast cancer gene therapy. Curr. Gene Ther., 2017, 17(2), 147-153.
[108]
Villate, B.I.; Puras, G.; Soto-Sanchez, C.; Aquirre, M.; Ojeda, E.; Zarate, J.; Fernandez, E.; Pedraz, J.L. Non- viral vectors based on magnetoplexes, lipoplexes and polyplexes for VEGF gene delivery into central nervous system mails. Int. J. Pharm., 2017, 521, 130-140.