[1]
Brott TG, Halperin JL, Abbara S, et al. ASA/ACCF/AHA/AANN /AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS guideline on the management of patients with extracranial carotid and vertebral artery disease. J Am Coll Cardiol 2011; 57(8): e16-94.
[2]
Hisham NF, Bayraktutan U. Epidemiology, pathophysiology, and treatment of hypertension in ischaemic stroke patients. J Stroke Cerebrovasc Dis 2013; 22(7): e4-e14.
[3]
Ten Kate GL, Sijbrands EJ, Staub D, et al. Noninvasive imaging of the vulnerable atherosclerotic plaque. Curr Probl Cardiol 2010; 35(11): 556-91.
[4]
AlMuhanna K, Hossain MM, Zhao L, et al. Carotid plaque morphometric assessment with three-dimensional ultrasound imaging. J Vasc Surg 2015; 61(3): 690-7.
[5]
Saam T, Hatsukami TS, Takaya N, et al. The vulnerable, or high-risk, atherosclerotic plaque: noninvasive MR imaging for charac-terization and assessment. Radiol 2007; 244(1): 64-77.
[6]
Zhao XQ, Hatsukami TS, Hippe DS, et al. Clinical factors associated with high-risk carotid plaque features as assessed by magnetic resonance imaging in patients with established vascular ease. Am J Cardiol 2014; 114(9): 1412-9.
[7]
Maintz JBA, Viergever MA. A survey of medical image registration. Med Image Anal 1998; 2(1): 1-36.
[8]
Hill DLG, Batchelor PG, Holden M, Hawkes DJ. Medical image registration. Phys Med Biol 2001; 46(3): R1-R45.
[9]
Zitova B, Flusser J. Image registration methods: A survey. Image Vision Comput 2003; 21(11): 977-1000.
[10]
Van den Elsen PA, Pol EJD, Viergever MA. Medical image matching-A review with classification. IEEE Eng Med Biol Mag 1993; 12(1): 26-39.
[11]
El-Gamal FEZA, Elmogy M, Atwan A. Current trends in medical image registration and fusion. Egypt Inform J 2016; 17(1): 99-124.
[12]
Viergever MA, Maintz JA, Klein S, Murphy K, Staring M, Pluim JP. A survey of medical image registration-under review. Med Image Anal 2016; 33: 140-4.
[13]
Matl S, Brosig R, Baust M, Navab N, Demirci S. Vascular image registration techniques: A living review. Med Image Anal 2017; 35: 1-17.
[14]
Slomka PJ, Mandel J, Downey D, Fenster A. Evaluation of voxel-based registration of 3-D power Doppler ultrasound and 3-D magnetic resonance angiographic images of carotid arteries. Ultrasound Med Biol 2001; 27(7): 945-55.
[15]
Reinhardt JM, Pluim JPW, Eds. Non-rigid registration for fusion of carotid vascular ultrasound and MRI volumetric datasets.In: Proceedings of medical imaging: Image processing, SPIE 6144 International society for optics and photonics. (SPIE). Bellingham 2006.
[16]
Nanayakkara ND, Chiu B, Samani A, et al. Nonrigid registration of three-dimensional ultrasound and magnetic resonance images of the carotid arteries. Med Phys 2009; 36(2): 373-85.
[17]
Gupta A, Verma HK, Gupta S. A hybrid framework for registration of carotid ultrasound images combining iconic and geometric features. Med Biol Eng Comput 2013; 51(9): 1043-50.
[18]
Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P. Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 1997; 16(2): 187-98.
[19]
Viola P, Wells III WM. Alignment by maximization of mutual information. Int J Comput Vis 1997; 24(2): 137-54.
[20]
Wells III WM, Viola P, Atsumi H, Nakajima S, Kikinis R. Multi-modal volume registration by maximization of mutual information. Med Image Anal 1996; 1(1): 35-51.
[21]
Liu C, Li K, Liu Z. Medical image registration by maximization of combined mutual information and edge correlative deviation. In: Proceedings of the 27th annual international conference of the engineering in medicine and biology society; Shanghai, China. IEEEEMBS 2005.
[22]
Pluim JPW, Maintz JA, Viergever MA. Image registration by maximization of combined mutual information and gradient information. In: Proceedings of international conference on medical image computing and computer-assisted intervention. Springer Berlin Heidelberg 2000; pp. 452-61.
[23]
Roche A, Pennec X, Malandain G, Ayache N. Rigid registration of 3-D ultrasound with MR images: A new approach combining intensity and gradient information. IEEE Trans Med Imaging 2001; 20(10): 1038-49.
[24]
Kim YS, Lee JH, Ra JB. Multi-sensor image registration based on intensity and edge orientation information. Patt Recogn 2008; 41(11): 3356-65.
[25]
Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 1986; 8(6): 679-98.
[26]
Marr D, Hildreth E. Theory of edge detection. Proc R Soc Lond B Biol Sci 1980; 207(1167): 187-217.
[27]
Yang L, Zhao D, Wu X, Li H, Zhai J. An improved Prewitt algorithm for edge detection based on noised image. In: Proceedings of the 4th international congress on image and signal processing. Shanghai, China. IEEE CISP 2011.
[28]
Dollar P, Zitnick CL. Fast edge detection using structured forests. IEEE Trans Pattern Anal Mach Intell 2015; 37(8): 1558-70.
[29]
Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Numerical recipes in C: The art of scientific computing. Cambridge University Press, New York, 1988.
[30]
Hajnal JV, Hill DLG, Hawkes DJ. Medical image registration Biomedical engineering series. CRC Press LLC 2001.
[31]
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: From error visibility to structural similarity. IEEE Trans Image Process 2004; 13(4): 600-12.
[32]
Sheikh HR, Bovik AC. Image information and visual quality. IEEE Trans Image Process 2006; 15: 430-44.
[33]
Xue W, Zhang L, Mou X, Bovik AC. Gradient magnitude similarity deviation: A highly efficient perceptual image quality index. IEEE Trans Image Process 2014; 23(2): 684-95.