Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Two Elution Mechanisms of MEP Chromatography

Author(s): Tsutomu Arakawa*, Masao Tokunaga, Takuya Maruyama and Kentaro Shiraki

Volume 20, Issue 1, 2019

Page: [28 - 33] Pages: 6

DOI: 10.2174/1389203718666171117105132

Price: $65

Abstract

MEP (mercapto-ethyl-pyridine) HyperCel is one of the hydrophobic charge induction chromatography (HCIC) resins. Under normal operation, proteins are bound to the MEP resin at neutral pH, at which MEP is not charged, mostly via hydrophobic interaction. MEP has a pyridine group, whose pK is 4.8, and hence is positively charged at acidic pH range. Based on the binding mechanism (i.e., hydrophobic interaction) and the induced positive charge at acidic pH, there may be two ways to elute the bound proteins. One way is to bring the pH down to protonate both MEP resin and the bound protein, leading to charge repulsion and thereby elution. Another way is to use hydrophobic interaction modifiers, which are often used in hydrophobic interaction chromatography, to reduce hydrophobic interaction. Here, we summarize such two possible elution approaches.

Keywords: MEP HyperCel, chromatography, antibody, arginine, elution, acidic pH.

Graphical Abstract

[1]
Burton, S.C.; Harding, D.R. Hydrophobic charge induction chromatography: salt independent protein adsorption and facile elution with aqueous buffers. J. Chromatogr. A, 1998, 814, 71-81.
[2]
Schwart, W.; Judd, D.; Wysocki, M.; Guerrier, L.; Birck-Wilson, E.; Boschetti, E. Comparison of hydrophobic charge induction chromatography with affinity chromatography on protein A for harvest and purification of antibodies. J. Chromatogr. A, 2001, 908, 251-263.
[3]
Boschetti, E. Antibody separation by hydrophobic charge induction chromatography. Trends Biotechnol., 2002, 20, 333-337.
[4]
Ghose, S.; Hubbard, B.; Cramer, S.M. Protein interactions in hydrophobic charge induction chromatography (HCIC). Biotechnol. Prog., 2005, 21, 498-508.
[5]
Ghose, S.; Hubbard, B.; Cramer, S.M. Evaluation and comparison of alternatives to protein A chromatography mimetic and hydrophobic charge induction chromatography stationary phases. J. Chromatogr. A, 2006, 1122, 144-152.
[6]
Gagnon, P. IgG aggregate removal by charge-hydrophobic mixed mode chromatography. Curr. Pharm. Biotechnol., 2009, 10, 434-439.
[7]
Arakawa, T.; Tsumoto, K.; Ejima, D. Alternative downstream processes for production of antibodies and antibody fragments. Biochim. Biophys. Acta, 2014, 1844, 2032-2040.
[8]
Arakawa, T.; Futatsumori-Sugai, M.; Tsumoto, K.; Kita, Y.; Sato, H.; Ejima, D. MEP HyperCel chromatography II: Binding, washing and elution. Protein Expr. Purif., 2010, 71, 168-173.
[9]
Arakawa, T.; Kita, Y.; Sato, H.; Ejima, D. MEP chromatography of antibody and Fc-fusion protein using aqueous arginine solution. Protein Expr. Purif., 2009, 63, 158-163.
[10]
Hirano, A.; Maruyama, T.; Shiraki, K.; Arakawa, T.; Kameda, T. Mechanism of protein desorption from 4-mercaptoethylpyridine resins by arginine solutions. J. Chromatogr. A, 2014, 1373, 141-148.
[11]
Huang, B.; Liu, F.F.; Dong, X.Y.; Sun, Y. Molecular mechanism of the affinity interactions between protein A and human immunoglobulin G1 revealed by molecular simulations. J. Phys. Chem. B, 2011, 115, 4168-4176.
[12]
Huang, B.; Liu, F.F.; Dong, X.Y.; Sun, Y. Molecular mechanism of the effects of salt and pH on the affinity between protein A and human immunoglobulin G1 revealed by molecular simulations. J. Phys. Chem. B, 2012, 116, 424-433.
[13]
Arakawa, T.; Philo, J.S.; Tsumoto, K.; Yumioka, R.; Ejima, D. Elution of antibodies from a Protein-A column by aqueous arginine solutions. Protein Expr. Purif., 2004, 36, 244-248.
[14]
Yumioka, R.; Tsumoto, K.; Arakawa, T.; Ejima, D. Screening of effective column rinse solvent for Protein-A chromatography. Protein Expr. Purif., 2010, 70, 218-223.
[15]
Deisenhofer, J. Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-A resolution. Biochemistry, 1981, 20, 2361-2370.
[16]
Gagnon, P. Purification tools for monoclonal antibodies; Validated Biosystems: Tucson, AZ, 1996.
[17]
Tsumoto, K.; Ejima, D.; Nagase, K.; Arakawa, T. Arginine improves protein elution in hydrophobic interaction chromatography. The cases of human interleukin-6 and activin-A. J. Chromatogr. A, 2007, 1154, 81-86.
[18]
Rodriguez-Aller, M.; Guillarme, D.; Beck, A.; Fekete, S. Practical method development for the separation of monoclonal antibodies and antibody-drug-conjugate species in hydrophobic interaction chromatography, part 1: optimization of the mobile phase. J. Pharm. Biomed. Anal., 2016, 118, 393-403.
[19]
Arakawa, T.; Kita, Y.; Ejima, D.; Gagnon, P. Solvent modulation of column chromatography. Protein Pept. Lett., 2008, 15, 544-555.
[20]
Hirano, A.; Shiraki, K.; Arakawa, T. Polyethylene glycol behaves like weak organic solvent. Biopolymers, 2012, 97, 117-122.
[21]
Bywater, R.; Eriksson, G.B.; Ottosson, T. Desorption of immunoglobulins from Protein A-Sepharose CL-4B under mild conditions. J. Immunol. Methods, 1983, 64, 1-6.
[22]
Tomita, S.; Tanabe, Y.; Shiraki, K. Oligoethylene glycols prevent thermal aggregation of α-chymotrypsin in a temperature-dependent manner: Implications for design guidelines. Biotechnol. Prog., 2013, 29, 1325-1330.
[23]
Tomita, S.; Nagasaki, Y.; Shiraki, K. Different mechanisms of action of poly(ethylene glycol) and arginine on thermal inactivation of lysozyme and ribonuclease A. Biotechnol. Bioeng., 2012, 109, 2543-2552.
[24]
Jennissen, H.P.; Botzet, G. Protein binding to two-dimensional hydrophobic binding-site lattices: adsorption hysteresis on immobilized butyl-residues. Int. J. Biol. Macromol., 1979, 1, 171-179.
[25]
Kummer, A.; Li-Chan, E.C. Application of an ELISA-elution assay as a screening tool for dissociation of yolk antibody-antigen complexes. J. Immunol. Methods, 1998, 211, 125-137.
[26]
Agraz, A.; Duarte, C.A.; Costa, L.; Pérez, L.; Páez, R.; Pujol, V.; Fontirrochi, G. Immunoaffinity purification of recombinant hepatitis B surface antigen from yeast using a monoclonal antibody. J. Chromatogr. A, 1994, 672, 25-33.
[27]
Shiraki, K.; Kudou, M.; Fujiwara, S.; Imanaka, T.; Takagi, M. Biophysical effect of amino acids on the prevention of protein aggregation. J. Biochem., 2002, 132, 591-595.
[28]
Lange, C.; Rudolph, R. Suppression of protein aggregation by L-arginine. Curr. Pharm. Biotechnol., 2009, 10, 408-414.
[29]
Hamada, H.; Arakawa, T.; Shiraki, K. Effect of additives on protein aggregation. Curr. Pharm. Biotechnol., 2009, 10, 400-407.
[30]
Tsumoto, K.; Ejima, D.; Kita, Y.; Arakawa, T. Review: Why is arginine effective in suppressing aggregation? Protein Pept. Lett., 2005, 12, 613-619.
[31]
Arakawa, T. Kita, Y. Multi-faceted arginine: Mechanism of the effects of arginine on protein. Curr. Protein Pept. Sci., 2014, 15, 608-620.
[32]
Arakawa, T.; Tsumoto, K.; Kita, Y.; Chang, B.; Ejima, D. Biotechnology applications of amino acids in protein purification and formulations. Amino Acids, 2007, 33, 587-605.
[33]
Ishibashi, M.; Tsumoto, K.; Tokunaga, M.; Ejima, D.; Kita, Y.; Arakawa, T. Is arginine a protein-denaturant? Protein Expr. Purif., 2005, 42, 1-6.
[34]
Yancey, P.H.; Clark, M.E.; Hand, S.C.; Bowlus, R.D.; Somero, G.N. Living with water stress: Evolution of osmolyte systems. Science, 1982, 217, 1214-1222.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy