[1]
Aschenbrenner, D.S.; Venable, S.J. Drug Therapy in Nursing, 4th ed; Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins , 2012.
[2]
Spironelli, C.; Bergamaschi, S.; Mondini, S.; Villani, D.; Angrilli, A. Functional plasticity in Alzheimer’s disease: effect of cognitive training on language-related ERP components. Neuropsychologia, 2013, 51(8), 1638-1648.
[3]
D’Errico, G.; Vitiello, G.; Ortona, O.; Tedeschi, A.; Ramunno, A.; D’Ursi, A.M. Interaction between alzheimer’s A β(25-35) peptide and phospholipid bilayers: the role of cholesterol. Biochim. Biophys. Acta, 2008, 1778(12), 2710-2716.
[4]
Thomas, S.; Shandilya, S.; Bharati, A.; Paul, S.K.; Agarwal, A.; Mathela, C.S. Identification, characterization and quantification of new impurities by LC-ESI/MS/MS and LC-UV methods in rivastigmine tartrate active pharmaceutical ingredient. J. Pharm. Biomed. Anal., 2012, 57, 39-51.
[5]
Bhatt, J.; Subbaiah, G.; Kambli, S.; Shah, B.; Nigam, S.; Patel, M.; Saxena, A.; Baliga, A.; Parekh, H.; Yadav, G. A rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the estimation of rivastigmine in human plasma. J. Chromatogr. B., 2007, 852(1-2), 115-121.
[6]
Pommier, F.; Frigola, R. Quantitative determination of rivastigmine and its major metabolite in human plasma by liquid chromatography with atmospheric pressure chemical ionization tandem mass spectrometry. J. Chromatogr. B., 2003, 784(2), 301-313.
[7]
Karthik, A.; Subramanian, G.S.; Musmade, P.; Ranjithkumar, A.; Surulivelrajan, M.; Udupa, N. Stability-indicating HPTLC determination of rivastigmine in the bulk drug and in pharmaceutical dosage forms. J. Planar Chromatogr. Mod. TLC, 2007, 20(6), 457-461.
[8]
Sha, Y.; Deng, C.; Liu, Z.; Huang, T.; Yang, B.; Duan, G. Headspace solid-phase microextraction and capillary gas chromatographic-mass spectrometric determination of rivastigmine in canine plasma samples. J. Chromatogr. B ., 2004, 806(2), 271-276.
[9]
El-Kosasy, A.M.; Salem, M.Y.; El-Bardicy, M.G.; Abd El-Rahman, M.K. Miniaturized membrane sensors for the determination of rivastigmine hydrogen tartrate. Chem. Pharm. Bull., 2008, 56(6), 753-757.
[10]
Salem, M.Y.; El-Kosasy, A.M.; El-Bardicy, M.G.; Abd El-Rahman, M.K. Spectrophotometric and spectrodensitometric methods for the determination of rivastigmine hydrogen tartrate in presence of its degradation product. Drug Test. Anal., 2010, 2(5), 225-233.
[11]
Kutner, W.; Wang, J.; L’her, M.; Buck, R.P. Analytical aspects of chemically modifıed electrodes: classifıcation, critical evaluation and recommendations. Pure App. Chem., 1998, 70(6), 1301-1318.
[12]
March, G.; Nguyen, T.D.; Piro, B. Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors, 2015, 5(2), 241-275.
[13]
Kalambate, P.K.; Biradar, M.R.; Karna, S.P.; Srivastava, A.K. Adsorptive stripping differential pulse voltammetry determination of rivastigmine at graphene nanosheet-gold nanoparticle/carbon paste electrode. J. Electroanal. Chem, 2015, 757, 150-158.
[14]
Arvand, M.; Fallahi, P. Voltammetric determination of rivastigmine in pharmaceutical and biological samples using molecularly imprinted polymer modified carbon paste electrode. Sens. Actuators B Chem., 2013, 188, 797-805.
[15]
Arvand, M.; Fallahi, P. Man-tailored biomimetic sensor of molecularly imprinted materials for the potentiometric measurement of rivastigmine in tablets and biological fluids and employing the taguchi optimization methodology to optimize the MIP-based membranes. Electroanalysis, 2012, 24(9), 1852-1863.
[16]
Dermis, S. Voltammetric behaviour of rivastigmine hydrogen tartrate and its determination in capsule dosage form. Hacettepe University J. Fac. Pharm., 2006, 26, 1-12.
[17]
Cayuela, A.; Benítez-Martínez, S.; Soriano, M.L. Carbon nanotools as sorbents and sensors of nanosized objects: The third way of analytical nanoscience and nanotechnology. Trends Anal. Chem., 2016, 84, 172-180.
[18]
Sitko, R.; Zawisza, B.; Malicka, E. Modification of carbon nanotubes for preconcentration, separation and determination of trace-metal ions. Trends Anal. Chem., 2012, 37, 22-31.
[19]
Wang, Z.; Xiao, S.; Chen, Y. β-Cyclodextrin incorporated carbon nanotubes-modified electrodes for simultaneous determination of adenine and guanine. J. Electroanal. Chem., 2006, 589(2), 237-242.
[20]
Shen, Q.; Wang, X. Simultaneous determination of adenine, guanine and thymine based on β-cyclodextrin/MWNTs modified electrode. J. Electroanal. Chem., 2009, 632(1-2), 149-153.
[21]
Rahemi, V.; Vandamme, J.J.; Garrido, J.M.P.J.; Borges, F.; Brett, C.M.A.; Garrido, E.M.P.J. Enhanced host-guest electrochemical recognition of herbicide MCPA using a β-cyclodextrin carbon nanotube sensor. Talanta, 2012, 99, 288-293.
[22]
He, J.L.; Yang, Y.; Yang, X.; Liu, Y.L.; Liu, Z.H.; Shen, G.L.; Yu, R.Q. β-Cyclodextrin incorporated carbon nanotube-modified electrode as an electrochemical sensor for rutin. Sens. Actuators B Chem., 2006, 114(1), 94-100.
[23]
Jin, J.H.; Kim, H.; Jung, S. Electrochemical selectivity enhancement by using monosuccinyl beta-cyclodextrin as a dopant for multi-wall carbon nanotube-modified glassy carbon electrode in simultaneous determination of quercetin and rutin. Biotechnol. Lett., 2009, 31(11), 1739-1744.
[24]
Wang, G.; Liu, X.; Yu, B.; Luo, G. Electrocatalytic response of norepinephrine at a β-cyclodextrin incorporated carbon nanotube modified electrode. J. Electroanal. Chem., 2004, 567(2), 227-231.
[25]
Abbaspour, A.; Noori, A. A cyclodextrin host-guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine. Biosens. Bioelectron., 2011, 26, 4674-4680.
[26]
Khaled, E.; Kamel, M.S.; Hassan, H.N.A.; Haroun, A.A.; Youssef, A.M.; Aboul-Enein, H.Y. Novel multi walled carbon nanotubes/β-cyclodextrin based carbon paste electrode for flow injection potentiometric determination of piroxicam. Talanta, 2012, 97, 96-101.
[27]
Yu, Q.; Liu, Y.; Liu, X.; Zeng, X.; Luo, S.; Wei, W. Simultaneous determination of dihydroxybenzene isomers at MWCNTs/β-cyclodextrin modified carbon ionic liquid electrode in the presence of cetylpyridinium bromide. Electroanalysis, 2010, 22(9), 1012-1018.
[28]
Abbaspour, A.; Noori, A. Cyclodextrin host-guest recognition approach to a label-free electrochemical DNA hybridization biosensor. Analyst, 2012, 137(8), 1860-1865.
[29]
Alarcón-Ángeles, G.; Guix, M.; Silva, W.C.; Ramírez-Silva, M.T.; Palomar-Pardavé, M.; Romero-Romo, M.; Merkoçi, A. Enzyme entrapment by β-cyclodextrin electropolymerization onto a carbon nanotubes-modified screen-printed electrode. Biosens. Bioelectron., 2010, 26(4), 1768-1773.
[30]
Kor, K.; Zarei, K. β-Cyclodextrin incorporated carbon nanotube paste electrode as electrochemical sensor for nifedipine. Electroanalysis, 2013, 25(6), 1497-1504.
[31]
Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed; New York: Wiley, 2001.
[32]
Bond, A.M. Modern polarographic methods in analytical chemistry; Marcel Dekker: New York, 1980.