[1]
Zhao, G.; Dong, X.Y.; Sun, Y. Ligands for mixed-mode protein chromatography: Principles, characteristics and design. J. Biotechnol., 2009, 144, 3-11.
[2]
Yang, Y.; Geng, X. Mixed-mode chromatography and its applications to biopolymers. J. Chromatogr. A, 2011, 1218, 8813-8825.
[3]
Zhang, K.; Liu, X. Mixed-mode chromatography in pharmaceutical and biopharmaceutical applications. J. Pharm. Biomed. Anal., 2016, 128, 73-88.
[4]
McLaughlin, L.W. Mixed-mode chromatography of nucleic acids. Chem. Rev., 1989, 89, 309-319.
[5]
Arakawa, T.; Tsumoto, K.; Nagase, K.; Ejima, D. The effects of arginine on protein binding and elution in hydrophobic interaction and ion-exchange chromatography. Protein Expr. Purif., 2007, 54, 110-116.
[6]
Ejima, D.; Yumioka, R.; Tsumoto, K.; Arakawa, T. Effective elution of antibodies by arginine and arginine derivatives in affinity column chromatography. Anal. Biochem., 2005, 345, 250-257.
[7]
Arakawa, T.; Philo, J.S.; Tsumoto, K.; Yumioka, R.; Ejima, D. Elution of antibodies from a Protein-A column by aqueous arginine solutions. Protein Expr. Purif., 2004, 36, 244-248.
[8]
Ejima, D.; Yumioka, R.; Arakawa, T.; Tsumoto, K. Arginine as an effective additive in gel permeation chromatography. J. Chromatogr. A, 2005, 1094, 49-55.
[9]
Buchner, J.; Rudolph, R. Renaturation, purification and characterization of recombinant Fab-fragments produced in Escherichia coli. Biotechnology, 1991, 9, 157-162.
[10]
Lange, C.; Rudolph, R. Suppression of protein aggregation by L-arginine. Curr. Pharm. Biotechnol., 2009, 10, 408-414.
[11]
Tsumoto, K.; Umetsu, M.; Kumagai, I.; Ejima, D.; Philo, J.S.; Arakawa, T. Role of arginine in protein refolding, solubilization, and purification. Biotechnol. Prog., 2004, 20, 1301-1308.
[12]
Arakawa, T.; Tsumoto, K. The effects of arginine on refolding of aggregated proteins: not facilitate refolding, but suppress aggregation. Biochem. Biophys. Res. Commun., 2003, 304, 148-152.
[13]
Shiraki, K.; Kudou, M.; Fujiwara, S.; Imanaka, T.; Takagi, M. Biophysical effect of amino acids on the prevention of protein aggregation. J. Biochem., 2002, 132, 591-595.
[14]
Arakawa, T.; Ejima, D.; Tsumoto, K.; Obeyama, N.; Tanaka, Y.; Kita, Y.; Timasheff, S.N. Suppression of protein interactions by arginine: A proposed mechanism of the arginine effects. Biophys. Chem., 2007, 127, 1-8.
[15]
Arakawa, T.; Kita, Y.; Sato, H.; Ejima, D. MEP chromatography of antibody and Fc-fusion protein using aqueous arginine solution. Protein Expr. Purif., 2009, 63, 158-163.
[16]
Kaleas, K.A.; Schmelzer, C.H.; Pizarro, S.A. Industrial case study: Evaluation of a mixed-mode resin for selective capture of a human growth factor recombinantly expressed in E. coli. J. Chromatogr. A, 2010, 1217, 235-242.
[17]
Hou, Y.; Cramer, S.M. Evaluation of selectivity in multimodal anion exchange systems: a priori prediction of protein retention and examination of mobile phase modifier effects. J. Chromatogr. A, 2011, 1218, 7813-7820.
[18]
Pezzini, J.; Cabanne, C.; Gantier, R.; Janakiraman, V.N.; Santarelli, X. A comprehensive evaluation of mixed mode interactions of HEA and PPA HyperCel chromatographic media. J. Chromatogr. B ., 2015, 976-977, 68-77.
[19]
Burton, S.C.; Harding, D.R. Hydrophobic charge induction chromatography: Salt independent protein adsorption and facile elution with aqueous buffers. J. Chromatogr. A, 1998, 814, 71-81.
[20]
Boschetti, E. Antibody separation by hydrophobic charge induction chromatography. Trends Biotechnol., 2002, 20, 333-337.
[21]
Chen, J.; Tetrault, J.; Ley, A. Comparison of standard and new generation hydrophobic interaction chromatography resins in the monoclonal antibody purification process. J. Chromatogr. A, 2008, 1177, 272-281.
[22]
Guerrier, L.; Girot, P.; Schwartz, W.; Boschetti, E. New method for the selective capture of antibodies under physiological conditions. Bioseparation, 2000, 9, 211-221.
[23]
Schwartz, W.; Judd, D.; Wysocki, M.; Guerrier, L.; Birck-Wilson, E.; Boschetti, E. Comparison of hydrophobic charge induction chromatography with affinity chromatography on protein A for harvest and purification of antibodies. J. Chromatogr. A, 2001, 908, 251-263.
[24]
Ghose, S.; Hubbard, B.; Cramer, S.M. Evaluation and comparison of alternatives to Protein A chromatography Mimetic and hydrophobic charge induction chromatographic stationary phases. J. Chromatogr. A, 2006, 1122, 144-152.
[25]
Ejima, D.; Tsumoto, K.; Fukada, H.; Yumioka, R.; Nagase, K.; Arakawa, T.; Philo, J.S. Effects of acid exposure on the conformation, stability, and aggregation of monoclonal antibodies. Proteins, 2007, 66, 954-962.
[26]
Arakawa, T.; Futatsumori-Sugai, M.; Tsumoto, K.; Kita, Y.; Sato, H.; Ejima, D. MEP HyperCel chromatography II: Binding, washing and elution. Protein Expr. Purif., 2010, 71, 168-173.
[27]
Hirano, A.; Maruyama, T.; Shiraki, K.; Arakawa, T.; Kameda, T. Mechanism of protein desorption from 4-mercaptoethylpyridine resins by arginine solutions. J. Chromatogr. A, 2014, 1373, 141-148.
[28]
Akerlof, G. Dielectric constants of some organic solvent-water mixtures at various temperatures. J. Am. Chem. Soc., 1932, 54, 4125-4139.
[29]
Miki, K.; Westh, P.; Koga, Y. Hydrophobicity vs hydrophilicity: Effects of poly(ethylene glycol) and tert-butyl alcohol on H2O as probed by 1-propanol. J. Phys. Chem. B, 2005, 109, 19536-19541.
[30]
Lin, D.Q.; Tong, H.F.; Wang, H.Y.; Shao, S.; Yao, S.J. Molecular mechanism of hydrophobic charge-induction chromatography: interactions between the immobilized 4-mercaptoethyl-pyridine ligand and IgG. J. Chromatogr. A, 2012, 1260, 143-153.
[31]
Lin, D.Q.; Tong, H.F.; Wang, H.Y.; Yao, S.J. Molecular insight into the ligand-IgG interactions for 4-mercaptoethyl-pyridine based hydrophobic charge-induction chromatography. J. Phys. Chem. B, 2012, 116, 1393-1400.
[32]
Yuan, X.M.; Lin, D.Q.; Zhang, Q.L.; Gao, D.; Yao, S.J. A microcalorimetric study of molecular interactions between immunoglobulin G and hydrophobic charge-induction ligand. J. Chromatogr. A, 2016, 1443, 145-151.
[33]
Cheng, F.; Li, M.Y.; Wang, H.Q.; Lin, D.Q.; Qu, J.P. Antibody-ligand interactions for hydrophobic charge-induction chromatography: A surface plasmon resonance study. Langmuir, 2015, 31, 3422-3430.
[34]
Ren, J.; Yao, P.; Cao, Y.; Cao, J.; Zhang, L.; Wang, Y.; Jia, L. Application of cyclodextrin-based eluents in hydrophobic charge-induction chromatography: Elution of antibody at neutral pH. J. Chromatogr. A, 2014, 1352, 62-68.
[35]
Li, P.; Xiu, G.; Mata, V.G.; Grande, C.A.; Rodrigues, A.E. Expanded bed adsorption/desorption of proteins with Streamline Direct CST I adsorbent. Biotechnol. Bioeng., 2006, 94, 1155-1163.
[36]
Li, P.; Xiu, G.H.; Rodrigues, A.E. Experimental and modeling study of protein adsorption in expanded bed. AlChE J., 2005, 51, 2965-2977.
[37]
Charoenrat, T.; Ketudat-Cairns, M.; Jahic, M.; Enfors, S.O.; Veide, A. Recovery of recombinant beta-glucosidase by expanded bed adsorption from Pichia pastoris high-cell-density culture broth. J. Biotechnol., 2006, 122, 86-98.
[38]
Holstein, M.A.; Parimal, S.; McCallum, S.A.; Cramer, S.M. Mobile phase modifier effects in multimodal cation exchange chromatography. Biotechnol. Bioeng., 2012, 109, 176-186.
[39]
Chung, W.K.; Hou, Y.; Holstein, M.; Freed, A.; Makhatadze, G.I.; Cramer, S.M. Investigation of protein binding affinity in multimodal chromatographic systems using a homologous protein library. J. Chromatogr. A, 2010, 1217, 191-198.
[40]
Freed, A.S.; Garde, S.; Cramer, S.M. Molecular simulations of multimodal ligand-protein binding: elucidation of binding sites and correlation with experiments. J. Phys. Chem. B, 2011, 115, 13320-13327.
[41]
Parimal, S.; Garde, S.; Cramer, S.M. Interactions of multimodal ligands with proteins: Insights into selectivity using molecular dynamics simulations. Langmuir, 2015, 31, 7512-7523.
[42]
Chung, W.K.; Freed, A.S.; Holstein, M.A.; McCallum, S.A.; Cramer, S.M. Evaluation of protein adsorption and preferred binding regions in multimodal chromatography using NMR. Proc. Natl. Acad. Sci. USA, 2010, 107, 16811-16816.
[43]
Wolfe, L.S.; Barringer, C.P.; Mostafa, S.S.; Shukla, A.A. Multimodal chromatography: Characterization of protein binding and selectivity enhancement through mobile phase modulators. J. Chromatogr. A, 2014, 1340, 151-156.
[44]
Arakawa, T.; Ponce, S.; Young, G. Isoform separation of proteins by mixed-mode chromatography. Protein Expr. Purif., 2015, 116, 144-151.
[45]
Hirano, A.; Arakawa, T.; Kameda, T. Interaction of arginine with Capto MMC in multimodal chromatography. J. Chromatogr. A, 2014, 1338, 58-66.
[46]
Kaleas, K.A.; Tripodi, M.; Revelli, S.; Sharma, V.; Pizarro, S.A. Evaluation of a multimodal resin for selective capture of CHO-derived monoclonal antibodies directly from harvested cell culture fluid. J. Chromatogr. B ., 2014, 969, 256-263.
[47]
Trexler-Schmidt, M.; Sze-Khoo, S.; Cothran, A.R.; Thai, B.Q.; Sargis, S.; Lebreton, B.; Kelley, B.; Blank, G.S. Purification strategies to process 5 g/L titers of monoclonal antibodies. BioPharm Int., 2009, 22, 8-15.
[48]
Eriksson, K.; Ljunglöf, A.; Rodrigo, G.; Brekkan, E. MAb contaminant removal with a multimodal anion exchanger: a platform step to follow protein A. BioProcess Int., 2009, 7, 52-56.
[49]
Gagnon, P. IgG aggregate removal by charged-hydrophobic mixed mode chromatography. Curr. Pharm. Biotechnol., 2009, 10, 434-439.
[50]
Voitl, A.; Muller-Spath, T.; Morbidelli, M. Application of mixed mode resins for the purification of antibodies. J. Chromatogr. A, 2010, 1217, 5753-5760.
[51]
Muller-Spath, T.; Aumann, L.; Strohlein, G.; Kornmann, H.; Valax, P.; Delegrange, L.; Charbaut, E.; Baer, G.; Lamproye, A.; Johnck, M.; Schulte, M.; Morbidelli, M. Two step capture and purification of IgG2 using multicolumn countercurrent solvent gradient purification (MCSGP). Biotechnol. Bioeng., 2010, 107, 974-984.
[52]
Ma, J.; Hoang, H.; Myint, T.; Peram, T.; Fahrner, R.; Chou, J.H. Using precipitation by polyamines as an alternative to chromatographic separation in antibody purification processes. J. Chromatogr. B., 2010, 878, 798-806.
[53]
Pezzini, J.; Joucla, G.; Gantier, R.; Toueille, M.; Lomenech, A.; Le Senechal, C.; Garbay, B.; Santarelli, X.; Cabanne, C. Antibody capture by mixed-mode chromatography: A comprehensive study from determination of optimal purification conditions to identification of contaminating host cell proteins. J. Chromatogr. A, 2011, 1218, 8197-8208.
[54]
Karkov, H.S.; Sejergaard, L.; Cramer, S.M. Methods development in multimodal chromatography with mobile phase modifiers using the steric mass action model. J. Chromatogr. A, 2013, 1318, 149-155.
[55]
Hirano, A.; Arakawa, T.; Kameda, T. Effects of arginine on multimodal anion exchange chromatography. Protein Expr. Purif., 2015, 116, 105-112.
[56]
Sejergaard, L.; Karkov, H.S.; Krarup, J.K.; Hagel, A.B.; Cramer, S.M. Model-based process development for the purification of a modified human growth hormone using multimodal chromatography. Biotechnol. Prog., 2014, 30, 1057-1064.
[57]
Vagenende, V.; Han, A.X.; Mueller, M.; Trout, B.L. Protein-associated cation clusters in aqueous arginine solutions and their effects on protein stability and size. ACS Chem. Biol., 2013, 8, 416-422.
[58]
Shukla, D.; Trout, B.L. Preferential interaction coefficients of proteins in aqueous arginine solutions and their molecular origins. J. Phys. Chem. B, 2011, 115, 1243-1253.
[59]
Hirano, A.; Kameda, T.; Arakawa, T.; Shiraki, K. Arginine-assisted solubilization system for drug substances: solubility experiment and simulation. J. Phys. Chem. B, 2010, 114, 13455-13462.
[60]
Ariki, R.; Hirano, A.; Arakawa, T.; Shiraki, K. Arginine increases the solubility of alkyl gallates through interaction with the aromatic ring. J. Biochem., 2011, 149, 389-394.
[61]
Hirano, A.; Tokunaga, H.; Tokunaga, M.; Arakawa, T.; Shiraki, K. The solubility of nucleobases in aqueous arginine solutions. Arch. Biochem. Biophys., 2010, 497, 90-96.
[62]
Hirano, A.; Kameda, T.; Shinozaki, D.; Arakawa, T.; Shiraki, K. Molecular dynamics simulation of the arginine-assisted solubilization of caffeic acid: intervention in the interaction. J. Phys. Chem. B, 2013, 117, 7518-7527.
[63]
Hirano, A.; Arakawa, T.; Shiraki, K. Arginine increases the solubility of coumarin: comparison with salting-in and salting-out additives. J. Biochem., 2008, 144, 363-369.
[64]
Wu, E.; Coppens, M.O.; Garde, S. Role of arginine in mediating protein-carbon nanotube interactions. Langmuir, 2015, 31, 1683-1692.
[65]
Shikiya, Y.; Tomita, S.; Arakawa, T.; Shiraki, K. Arginine inhibits adsorption of proteins on polystyrene surface. PLoS One, 2013, 8, e70762.
[66]
Hirano, A.; Tanaka, T.; Kataura, H.; Kameda, T. Arginine side chains as a dispersant for individual single-wall carbon nanotubes. Chem. Eur. J., 2014, 20, 4922-4930.
[67]
Li, J.; Garg, M.; Shah, D.; Rajagopalan, R. Solubilization of aromatic and hydrophobic moieties by arginine in aqueous solutions. J. Chem. Phys., 2010, 133, 054902.
[68]
Zhang, L.; Zhao, G.; Sun, Y. Molecular insight into protein conformational transition in hydrophobic charge induction chromatography: a molecular dynamics simulation. J. Phys. Chem. B, 2009, 113, 6873-6880.
[69]
Zhang, L.; Zhao, G.; Sun, Y. Effects of ligand density on hydrophobic charge induction chromatography: molecular dynamics simulation. J. Phys. Chem. B, 2010, 114, 2203-2211.
[70]
Zhang, Q.; Zhuang, T.; Tong, H.; Wang, H.; Lin, D.; Yao, S. Experimental and in silico studies on three hydrophobic charge-induction adsorbents for porcine immunoglobulin purification. Chin. J. Chem. Eng., 2016, 24, 151-157.
[71]
Hirano, A.; Maruyama, T.; Shiraki, K.; Arakawa, T.; Kameda, T. A study of the small-molecule system used to investigate the effect of arginine on antibody elution in hydrophobic charge-induction chromatography. Protein Expr. Purif., 2017, 129, 44-52.
[72]
Shukla, D.; Zamolo, L.; Cavallotti, C.; Trout, B.L. Understanding the role of arginine as an eluent in affinity chromatography via molecular computations. J. Phys. Chem. B, 2011, 115, 2645-2654.