[1]
Tswett, M. Physikalisch-chemische Studien über das Chlorophyll. Die Adsorptionen. Berichte der Deutschen Botanischen Gesellschaft., 1906, 24, 316-323.
[2]
Hjertén, S.; Rosengren, J.; Påhlman, S. Hydrophobic interation chromatography. The synthesis and the use of some alkyl and aryl derivatives of agarose. J. Chromatogr. A, 1974, 101, 281-288.
[3]
Hofstee, B.H.J.; Otillio, N.F. Non-ionic adsorption chromatography of proteins. J. Chromatogr. A, 1978, 159, 57-69.
[4]
Queiroz, J.A.; Tomaz, C.T.; Cabral, J.M.S. Hydrophobic interaction chromatography of proteins. J. Biotechnol., 2001, 87, 143-159.
[5]
Kallberg, K.; Johansson, H-O.; Bulow, L. Multimodal chromatography: An efficient tool in downstream processing of proteins. Biotechnol. J., 2012, 7, 1-11.
[6]
Gorbunoff, M.J. The interaction of proteins with hydroxyapatite: I. Role of protein charge and structure. Anal. Biochem., 1984, 136, 425-432.
[7]
Gorbunoff, M.J. The interaction of proteins with hydroxyapatite: II. Role of acidic and basic groups. Anal. Biochem., 1984, 136, 433-439.
[8]
Gorbunoff, M.J.; Timasheff, S.N. The interaction of proteins with hydroxyapatite: III. Mechanism. Anal. Biochem., 1984, 136, 440-445.
[9]
Yon, R.J. Chromatography of lipophilic proteins on adsorbents containing mixed hydrophobic and ionic groups. Biochem. J., 1972, 126, 765-767.
[10]
Er-El, Z.; Zaidenzaig, Y.; Shaltiel, S. Hydrocarbon-coated Sepharoses. Use in the purification of glycogen phosphorylase. Biochem. Biophys. Res. Commun., 1972, 49, 383-390.
[11]
Hofstee, B.H.J. Protein binding by agarose carrying hydrophobic groups in conjunction with charges. Biochem. Biophys. Res. Commun., 1973, 50, 751-757.
[12]
Porath, J.; Aspberg, K.; Drevin, H.; Axén, R. Preparation of cyanogen bromide-activated agarose gels. J. Chromatogr. A, 1973, 86, 53-56.
[13]
Shaltiel, S.; Er-El, Z. Hydrophobic chromatography: Use for purification of glycogen synthetase. Proc. Natl. Acad. Sci. USA, 1973, 70, 778-781.
[14]
Kennedy, L.A.; Kopaciewicz, W.; Regnier, F.E. Multimodal liquid chromatography columns for the separation of proteins in either the anion-exchange or hydrophobic- interaction mode. J. Chromatogr., 1986, 359, 73-84.
[15]
Sasaki, I.; Gotoh, H.; Yamamoto, R.; Hasegawa, H.; Yamashita, J.; Horio, T. Hydrophobic-ionic chromatography. Its application to purification of porcine pancreas enzymes. J. Biochem., 1979, 86, 1537-1548.
[16]
Sasaki, I.; Gotoh, H.; Yamamoto, R.; Tanaka, H.; Takami, K.; Yamashita, K.; Yamashita, J.; Horio, T. Hydrophobic-ionic chromatography: its application to microbial glucose oxidase, hyaluronidase, cholesterol oxidase, and cholesterol esterase. J. Biochem., 1982, 91, 1555-1561.
[17]
Woo, J.A.; Chen, H.; Snyder, M.A.; Chai, Y.; Frost, R.G.; Cramer, S.M. Defining the property space for chromatographic ligands from a homologous series of mixed-mode ligands. J. Chromatogr. A, 2015, 1407, 58-68.
[18]
Lončar, N.; Slavić, M.Š.; Vujčić, Z.; Božić, N. Mixed-mode resins: taking shortcut in downstream processing of raw-starch digesting α-amylases. Nat. Sci. Rep., 2015, 5, 15772.
[19]
Kaplan, L.J.; Fostes, J.F. Isoelectric focusing behavior of bovine plasma albumin, mercaptalbumin, and β-lactoglobulins A and B. Biochemistry, 1971, 10, 630-636.
[20]
Zhu, M.; Carta, G. Protein adsorption equilibrium and kinetics in multimodal cation exchange resins. Absorption, 2016, 22, 165-179.
[21]
Vassalli, P.; Tedghi, R.; Lisowska-Bernstein, B.; Tartakoff, A.; Jaton, J-C. Evidence for hydrophobic region within heavy chains of mouse B lymphocyte membrane-bound IgM. Proc. Natl. Acad. Sci. USA, 1979, 76, 5515-5519.
[22]
Gagnon, P.; Hensel, F.; Lee, S.; Zaidi, S. Chromatographic behavior of IgM:DNA complexes. J. Chromatogr. A, 2011, 1218, 2405-2412.