Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Review on the Application of Mixed-mode Chromatography for Separation of Structure Isoforms

Author(s): Tsutomu Arakawa*

Volume 20, Issue 1, 2019

Page: [56 - 60] Pages: 5

DOI: 10.2174/1389203718666171009111033

Price: $65

Abstract

Proteins often generate structure isoforms naturally or artificially due to, for example, different glycosylation, disulfide scrambling, partial structure rearrangement, oligomer formation or chemical modification. The isoform formations are normally accompanied by alterations in charged state or hydrophobicity. Thus, isoforms can be fractionated by reverse-phase, hydrophobic interaction or ion exchange chromatography. We have applied mixed-mode chromatography for fractionation of isoforms for several model proteins and observed that cation exchange Capto MMC and anion exchange Capto adhere columns are effective in separating conformational isoforms and self-associated oligomers.

Keywords: Mixed-mode, isoform, glycoprotein, arginine, Capto MMC, Capto adhere.

Graphical Abstract

[1]
Storring, P.L.; Yuen, C-T.; Skibeli, V.; Nissen-Lie, G.; Torjesen, P. Differences between the N-glycans of human serum erythropoietin and recombinant human erythropoietin. Blood, 2003, 101, 1204-1205.
[2]
Lasne, F.; Marin, L.; Crepin, N.; de Ceaurriz, J. Detection of isoelectric profiles of erythropoietin in urine: Differentiation of natural and administered recombinant hormones. Anal. Biochem., 2002, 311, 119-126.
[3]
Catlin, D.H.; Breidbach, A.; Elliott, S.; Glaspy, J. Comparison of the isoelectric focusing patterns of Darbepoetin alfa, recombinant human erythropoietin, and endogenous erythropoientin from human urine. Clin. Chem., 2002, 48, 2057-2059.
[4]
Miller, J.A.; Narhi, L.O.; Hua, Q.X.; Rosenfeld, R.; Arakawa, T.; Rohde, M.; Prestrelski, S.; Lauren, S.; Stoney, K.S.; Tsai, L.; Weiss, M.A. Oxidative refolding of insulin-like growth factor yields two products of similar thermodynamic stability: A bifurcating protein-folding pathway. Biochemistry, 1993, 32, 5203-5213.
[5]
Narhi, L.O.; Hua, Q.X.; Arakawa, T.; Fox, G.M.; Tsai, L.; Rosenfeld, R.; Holst, P.; Miller, J.A.; Weiss, M.A. Role of native disulfide bonds in the structure and activity of insulin-like growth factor 1: genetic models of protein-folding intermediates. Biochemistry, 1993, 32, 5214-5221.
[6]
Hua, Q.X.; Narhi, L.O.; Jie, W.; Arakawa, T.; Rosenfeld, R.; Hawkins, N.; Miller, J.A.; Weiss, M.A. Native and non-native structure in anprotein-folding intermediates: spectroscopic studies of partially reduced IGF-1 and an engineered alanine model. J. Mol. Biol., 1996, 259, 297-313.
[7]
Rosenfeld, R.D.; Miller, J.A.; Narhi, L.O.; Hawkins, N.; Katta, V.; Lauren, S.; Weiss, M.A.; Arakawa, T. Arch. Biochem. Biophys., 1997, 342, 298-305.
[8]
Qiao, Z-S.; Guo, Z-Y.; Feng, Y-M. Putative disulfide-forming pathway of porcine insulin precursor during its refolding in vitro. Biochemistry, 2001, 40, 2662-2668.
[9]
Babcock, J.J.; Brancaleon, L. Bovine serum albumin oligomers in the E- and B-forms at low protein concentration and ionic strength. Int. J. Biol. Macromol., 2013, 53, 42-53.
[10]
Lin, J-J.; Meyer, J.D.; Carpenter, J.F.; Manning, M.C. Aggregation of human serum albumin during a thermal viral inactivation step. Int. J. Biol. Macromol., 2009, 45, 91-96.
[11]
Vaiana, S.M.; Emanuele, A.; Palma-Vittorelli, M.B.; Palma, M.U. Irreversible formation of intermediate BSA oligomers requires and induces conformational changes. Proteins, 2004, 55, 1053-1062.
[12]
Arakawa, T.; Kita, Y. Protection of bovine serum albumin from aggregation by Tween 80. J. Pharm. Sci., 2000, 89, 646-651.
[13]
Arakawa, T.; Kita, Y. Stabilizing effects of caprylate and acetyltryptophanate on heat-induced aggregation of bovine serum albumin. Biochim. Biophys. Acta, 2000, 1479, 32-36.
[14]
Ejima, D.; Yumioka, R.; Tsumoto, K.; Arakawa, T. Effective elution of antibodies by arginine and arginine derivatives in affinity column chromatography. Anal. Biochem., 2005, 345, 250-257.
[15]
Redman, E.A.; Mellors, J.S.; Starkey, J.A.; Ramsey, J.M. Characterization of intact antibody drug conjugate variants using microfluidic capillary electrophoresis-mass spectrometry. Anal. Chem., 2016, 88, 2220-2226.
[16]
Birdsall, R.E.; Shion, H.; Kotch, F.W.; Xu, A.; Porter, T.J.; Chen, W. A rapid on-line method for mass spectrometric confirmation of a cysteine-conjugated antibody-drug-conjugate structure using multidimensional chromatography. MAbs, 2015, 7, 1036-1044.
[17]
Yang, Y.; Geng, X. Mixed-mode chromatography and its applications to biopolymers. J. Chromatogr. A, 2011, 1218, 8813-8825.
[18]
Zhao, G.; Dong, X.Y.; Sun, Y. Ligands for mixed-mode protein chromatography: Principles, characteristics and design. J. Biotechnol., 2009, 144, 3-11.
[19]
Arakawa, T.; Tsumoto, K. EJima, D. Alternative downstream processes for production of antibodies and antibody fragments. Biochim. Biophys. Acta, 2014, 1844, 2032-2040.
[20]
Hirano, A.; Arakawa, T.; Kameda, T. Interaction of arginine with Capto MMC in multimodal chromatography. J. Chromatogr. A, 2014, 1338, 58-66.
[21]
Hirano, A.; Arakawa, T.; Kameda, T. Effects of arginine on multimodal anion exchange chromatography. Protein Exp. Purif., 2015, 116, 105-112.
[22]
Arakawa, T.; Ponce, S.; Young, G. Isoform separation of proteins by mixed-mode chromatography. Protein Exp. Purif., 2015, 116, 144-151.
[23]
Tsumoto, K.; Ejima, D.; Kita, Y.; Arakawa, T. Reviwe: why is arginine effective in suppressing aggregation? Protein Pept. Lett., 2005, 12, 613-619.
[24]
Arakawa, T.; Tsumoto, K.; Nagase, K.; Ejima, D. The effects of arginine on protein binding and elution in hydrophobic interaction and ion-exchange chromatography. Protein Expr. Purif., 2007, 54, 110-116.
[25]
Chung, W.K.; Freed, A.S.; Holstein, M.A.; McCallum, S.A.; Cramer, S.M. Evaluation of protein adsorption and preferred binding regions in multimodal chromatography suing NMR. Proc. Natl. Acad. Sci. USA, 2010, 107, 16811-16816.
[26]
Kaleas, K.; Schmelzer, C.H.; Pizarro, S.A. Industrial case study: Evaluation of a mixed-mode resin for selective capture of a human growth factor recombinantly expressed in E. coli. J. Chromatogr. A, 2010, 1217, 235-242.
[27]
Pizarro, S.A.; Gunson, J.; Field, M.J.; Dings, R.; Khoo, S.; Dalal, M.; Lee, M.; Kaleas, K.A.; Moiseff, K.; Garnick, S.; Reilly, D.E.; Laird, M.W.; Schmelzer, C.H. High-yield expression of human vascular endothelial growth factor VEGF165 in Escherichia coli and purification for therapeutic applications. Protein Expr. Purif., 2010, 72, 184-193.
[28]
Teran, M.; Nugent, M.A. Synergistic binding of vascular endothelial growth factor-A and its receptors to heparin selectively modulates complex affinity. J. Biol. Chem., 2015, 290, 16451-16462.
[29]
Holstein, M.A.; Parimal, S.; McCallum, S.A.; Cramer, S.M. Mobile phase modifier effects in multimodal cation exchange chromatography. Biotechnol. Bioeng., 2012, 109, 176-186.
[30]
Kaleas, K.A.; Tripodi, M.; Revelli, S.; Sharma, V.; Pizarro, S.A. Evaluation of a multimodal resin for selective capture of CHO-derived monoclonal antibodies directly from harvested cell culture fluid. J. Chromatogr. B ., 2014, 969, 256-263.
[31]
Krayukhina, E.; Noda, M.; Ishii, K.; Maruno, T.; Wakabayashi, H.; Tada, M.; Suzuki, T.; Ishii-Watabe, A.; Kato, M.; Uchiyama, S. Analytical ultracentrifugation with fluorescent detection reveals differences in complex formation between recombinant human TNF and different biological TNF antagonists in various environemtns. MABS, 2017, 9, 664-679.
[32]
Fung, V.P. Method for producing recombinant proteins. US 7294481 B1. Nov 13 2007.
[33]
Treuheit, M.J.; O’Conner, S.R.; Kostky, A.A. Process for correction of a disulfide misfold in Fc molecules. US 7723490. May 25 2010.
[34]
Lamanna, W.C.; Mayer, R.E.; Ruppreschter, A.; Fuchs, M.; Higel, F.; Fritsch, C.; Vogelsang, C.; Seidl, A.; Toll, H.; Schiestl, M.; Holzmann, J. The structure-function relationship of disulfide bonds in etanercept. Sci. Rep., 2017, 7, 3951-3958.
[35]
Chen, J.; Jaracz, S.; Zhao, X.; Chen, S.; Ojima, I. Antibody-cytotoxic conjugates for cancer therapy. Expert Opin. Drug Deliv., 2005, 2, 873-890.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy