[1]
Storring, P.L.; Yuen, C-T.; Skibeli, V.; Nissen-Lie, G.; Torjesen, P. Differences between the N-glycans of human serum erythropoietin and recombinant human erythropoietin. Blood, 2003, 101, 1204-1205.
[2]
Lasne, F.; Marin, L.; Crepin, N.; de Ceaurriz, J. Detection of isoelectric profiles of erythropoietin in urine: Differentiation of natural and administered recombinant hormones. Anal. Biochem., 2002, 311, 119-126.
[3]
Catlin, D.H.; Breidbach, A.; Elliott, S.; Glaspy, J. Comparison of the isoelectric focusing patterns of Darbepoetin alfa, recombinant human erythropoietin, and endogenous erythropoientin from human urine. Clin. Chem., 2002, 48, 2057-2059.
[4]
Miller, J.A.; Narhi, L.O.; Hua, Q.X.; Rosenfeld, R.; Arakawa, T.; Rohde, M.; Prestrelski, S.; Lauren, S.; Stoney, K.S.; Tsai, L.; Weiss, M.A. Oxidative refolding of insulin-like growth factor yields two products of similar thermodynamic stability: A bifurcating protein-folding pathway. Biochemistry, 1993, 32, 5203-5213.
[5]
Narhi, L.O.; Hua, Q.X.; Arakawa, T.; Fox, G.M.; Tsai, L.; Rosenfeld, R.; Holst, P.; Miller, J.A.; Weiss, M.A. Role of native disulfide bonds in the structure and activity of insulin-like growth factor 1: genetic models of protein-folding intermediates. Biochemistry, 1993, 32, 5214-5221.
[6]
Hua, Q.X.; Narhi, L.O.; Jie, W.; Arakawa, T.; Rosenfeld, R.; Hawkins, N.; Miller, J.A.; Weiss, M.A. Native and non-native structure in anprotein-folding intermediates: spectroscopic studies of partially reduced IGF-1 and an engineered alanine model. J. Mol. Biol., 1996, 259, 297-313.
[7]
Rosenfeld, R.D.; Miller, J.A.; Narhi, L.O.; Hawkins, N.; Katta, V.; Lauren, S.; Weiss, M.A.; Arakawa, T. Arch. Biochem. Biophys., 1997, 342, 298-305.
[8]
Qiao, Z-S.; Guo, Z-Y.; Feng, Y-M. Putative disulfide-forming pathway of porcine insulin precursor during its refolding in vitro. Biochemistry, 2001, 40, 2662-2668.
[9]
Babcock, J.J.; Brancaleon, L. Bovine serum albumin oligomers in the E- and B-forms at low protein concentration and ionic strength. Int. J. Biol. Macromol., 2013, 53, 42-53.
[10]
Lin, J-J.; Meyer, J.D.; Carpenter, J.F.; Manning, M.C. Aggregation of human serum albumin during a thermal viral inactivation step. Int. J. Biol. Macromol., 2009, 45, 91-96.
[11]
Vaiana, S.M.; Emanuele, A.; Palma-Vittorelli, M.B.; Palma, M.U. Irreversible formation of intermediate BSA oligomers requires and induces conformational changes. Proteins, 2004, 55, 1053-1062.
[12]
Arakawa, T.; Kita, Y. Protection of bovine serum albumin from aggregation by Tween 80. J. Pharm. Sci., 2000, 89, 646-651.
[13]
Arakawa, T.; Kita, Y. Stabilizing effects of caprylate and acetyltryptophanate on heat-induced aggregation of bovine serum albumin. Biochim. Biophys. Acta, 2000, 1479, 32-36.
[14]
Ejima, D.; Yumioka, R.; Tsumoto, K.; Arakawa, T. Effective elution of antibodies by arginine and arginine derivatives in affinity column chromatography. Anal. Biochem., 2005, 345, 250-257.
[15]
Redman, E.A.; Mellors, J.S.; Starkey, J.A.; Ramsey, J.M. Characterization of intact antibody drug conjugate variants using microfluidic capillary electrophoresis-mass spectrometry. Anal. Chem., 2016, 88, 2220-2226.
[16]
Birdsall, R.E.; Shion, H.; Kotch, F.W.; Xu, A.; Porter, T.J.; Chen, W. A rapid on-line method for mass spectrometric confirmation of a cysteine-conjugated antibody-drug-conjugate structure using multidimensional chromatography. MAbs, 2015, 7, 1036-1044.
[17]
Yang, Y.; Geng, X. Mixed-mode chromatography and its applications to biopolymers. J. Chromatogr. A, 2011, 1218, 8813-8825.
[18]
Zhao, G.; Dong, X.Y.; Sun, Y. Ligands for mixed-mode protein chromatography: Principles, characteristics and design. J. Biotechnol., 2009, 144, 3-11.
[19]
Arakawa, T.; Tsumoto, K. EJima, D. Alternative downstream processes for production of antibodies and antibody fragments. Biochim. Biophys. Acta, 2014, 1844, 2032-2040.
[20]
Hirano, A.; Arakawa, T.; Kameda, T. Interaction of arginine with Capto MMC in multimodal chromatography. J. Chromatogr. A, 2014, 1338, 58-66.
[21]
Hirano, A.; Arakawa, T.; Kameda, T. Effects of arginine on multimodal anion exchange chromatography. Protein Exp. Purif., 2015, 116, 105-112.
[22]
Arakawa, T.; Ponce, S.; Young, G. Isoform separation of proteins by mixed-mode chromatography. Protein Exp. Purif., 2015, 116, 144-151.
[23]
Tsumoto, K.; Ejima, D.; Kita, Y.; Arakawa, T. Reviwe: why is arginine effective in suppressing aggregation? Protein Pept. Lett., 2005, 12, 613-619.
[24]
Arakawa, T.; Tsumoto, K.; Nagase, K.; Ejima, D. The effects of arginine on protein binding and elution in hydrophobic interaction and ion-exchange chromatography. Protein Expr. Purif., 2007, 54, 110-116.
[25]
Chung, W.K.; Freed, A.S.; Holstein, M.A.; McCallum, S.A.; Cramer, S.M. Evaluation of protein adsorption and preferred binding regions in multimodal chromatography suing NMR. Proc. Natl. Acad. Sci. USA, 2010, 107, 16811-16816.
[26]
Kaleas, K.; Schmelzer, C.H.; Pizarro, S.A. Industrial case study: Evaluation of a mixed-mode resin for selective capture of a human growth factor recombinantly expressed in E. coli. J. Chromatogr. A, 2010, 1217, 235-242.
[27]
Pizarro, S.A.; Gunson, J.; Field, M.J.; Dings, R.; Khoo, S.; Dalal, M.; Lee, M.; Kaleas, K.A.; Moiseff, K.; Garnick, S.; Reilly, D.E.; Laird, M.W.; Schmelzer, C.H. High-yield expression of human vascular endothelial growth factor VEGF165 in Escherichia coli and purification for therapeutic applications. Protein Expr. Purif., 2010, 72, 184-193.
[28]
Teran, M.; Nugent, M.A. Synergistic binding of vascular endothelial growth factor-A and its receptors to heparin selectively modulates complex affinity. J. Biol. Chem., 2015, 290, 16451-16462.
[29]
Holstein, M.A.; Parimal, S.; McCallum, S.A.; Cramer, S.M. Mobile phase modifier effects in multimodal cation exchange chromatography. Biotechnol. Bioeng., 2012, 109, 176-186.
[30]
Kaleas, K.A.; Tripodi, M.; Revelli, S.; Sharma, V.; Pizarro, S.A. Evaluation of a multimodal resin for selective capture of CHO-derived monoclonal antibodies directly from harvested cell culture fluid. J. Chromatogr. B ., 2014, 969, 256-263.
[31]
Krayukhina, E.; Noda, M.; Ishii, K.; Maruno, T.; Wakabayashi, H.; Tada, M.; Suzuki, T.; Ishii-Watabe, A.; Kato, M.; Uchiyama, S. Analytical ultracentrifugation with fluorescent detection reveals differences in complex formation between recombinant human TNF and different biological TNF antagonists in various environemtns. MABS, 2017, 9, 664-679.
[32]
Fung, V.P. Method for producing recombinant proteins. US 7294481 B1. Nov 13 2007.
[33]
Treuheit, M.J.; O’Conner, S.R.; Kostky, A.A. Process for correction of a disulfide misfold in Fc molecules. US 7723490. May 25 2010.
[34]
Lamanna, W.C.; Mayer, R.E.; Ruppreschter, A.; Fuchs, M.; Higel, F.; Fritsch, C.; Vogelsang, C.; Seidl, A.; Toll, H.; Schiestl, M.; Holzmann, J. The structure-function relationship of disulfide bonds in etanercept. Sci. Rep., 2017, 7, 3951-3958.
[35]
Chen, J.; Jaracz, S.; Zhao, X.; Chen, S.; Ojima, I. Antibody-cytotoxic conjugates for cancer therapy. Expert Opin. Drug Deliv., 2005, 2, 873-890.