[1]
Lessiani G, Santilli F, Boccatonda A, et al. Arterial stiffness and sedentary lifestyle: Role of oxidative stress. Vascul Pharmacol 2015; 79: 1-5.
[2]
Pem D, Jeewon R. Fruit and vegetable intake: benefits and progress of nutrition education interventions- narrative review article. Iran J Public Health 2015; 44(10): 1309-21.
[3]
Slavin J, Lloyd B. Health benefits of fruits and vegetables. Adv Nutr 2012; 3(4): 506-16.
[4]
Garrido M, Terrón MP, Rodríguez AB. Chrononutrition against oxidative stress in aging. Oxid Med Cell Longev 2013; 2013: 1-9.
[5]
McCune LM, Kubota C, Stendell-Hollis NR, et al. Cherries and health: A review. Crit Rev Food Sci Nutr 2010; 51(1): 1-12.
[6]
Matias AA, Rosado-Ramos R, Nunes SL, et al. Protective effect of a (poly)phenol-rich extract derived from sweet cherries culls against oxidative cell damage. Molecules 2016; 21(4): 1-16.
[7]
Kelebek H, Selli S. Evaluation of chemical constituents and antioxidant activity of sweet cherry (Prunus avium L.) cultivars. Int J Food Sci Technol 2011; 46(12): 2530-7.
[8]
Usenik V, Fabčič J, Štampar F. Sugars, organic acids, phenolic composition and antioxidant activity of sweet cherry (Prunus avium L.). Food Chem 2008; 107(1): 185-92.
[9]
Dunn DL. Surgical infections. In: Brunicard FC, Andersen DK,Billiar TR, et al, Eds Schwartz’s principles of surgery. 9th ed. New York: McGraw-Hill Education 2013.
[10]
Gonçalves AC, Bento C, Silva BM, et al. Sweet cherries from Fundão possess antidiabetic potential and protect human erythrocytes against oxidative damage. Food Res Int 2017; 95: 91-100.
[11]
Kim DO, Heo HJ, Kim YJ, et al. Sweet and sour cherry phenolics and their protective effects on neuronal cells. J Agric Food Chem 2005; 53: 9921-7.
[12]
Serra AT, Duarte RO, Bronze MR, et al. Identification of bioactive response in traditional cherries from Portugal. Food Chem 2011; 125(2): 318-25.
[13]
Hanbali LB, Amiry JG, Ghadieh RM, et al. The antimicrobial activity of sweet cherry (Prunus avium) extracts: II. Measurement of sensitivity and attenuation of gram-positive and gram-negative bacteria and C. albicans in culture. Curr Nutr Food Sci 2012; 8(4): 292-303.
[14]
Kelley DS, Rasooly R, Jacob RA, et al. Consumption of Bing sweet cherries lowers circulating concentrations of inflammation markers in healthy men and women. J Nutr 2006; 136(4): 981-6.
[15]
Delgado J, Terrón M del P, Garrido M, et al. Jerte Valley cherry-based product modulates serum inflammatory markers in rats and ringdoves. J Appl Biomed 2012; 10(1): 41-50.
[16]
Jacob RA, Spinozzi GM, Simon VA, et al. Consumption of cherries lowers plasma urate in healthy women. J Nutr 2003; 133(6): 1826-9.
[17]
Kirakosyan A, Seymour EM, Wolforth J, et al. Tissue bioavailability of anthocyanins from whole tart cherry in healthy rats. Food Chem 2015; 171: 26-31.
[18]
Kappel F, Fisher-Fleming B, Hogue E. Fruit characteristics and sensory attributes of an ideal sweet cherry. HortScience 1996; 31(3): 443-6.
[19]
Balmer M, Blanke MM. Cultivation of sweet cherry under rain covers. Acta Hortic 2008; 795(795): 479-84.
[20]
Basanta MF, De Escalada Plá MF, Raffo MD, et al. Cherry fibers isolated from harvest residues as valuable dietary fiber and functional food ingredients. J Food Eng 2014; 126: 149-55.
[21]
Ataie‐Jafari A, Hosseini S, Karimi F, et al. Effects of sour cherry juice on blood glucose and some cardiovascular risk factors improvements in diabetic women. Nutr Food Sci 2008; 38(4): 355-60.
[22]
González-Gómez D, Lozano M, Fernández-León MF, et al. Detection and quantification of melatonin and serotonin in eight sweet cherry cultivars (Prunus avium L.). Eur Food Res Technol 2009; 229(2): 223-9.
[23]
Ferretti G, Bacchetti T, Belleggia A, et al. Cherry antioxidants: From farm to table. Molecules 2010; 15(10): 6993-7005.
[24]
Kirakosyan A, Seymour EM, Llanes DEU, et al. Chemical profile and antioxidant capacities of tart cherry products. Food Chem 2009; 115(1): 20-5.
[25]
Seymour EM, Singer AAM, Kirakosyan A, et al. Altered hyperlipidemia, hepatic steatosis, and hepatic peroxisome proliferator-activated receptors in rats with intake of tart cherry. J Med Food 2008; 11(2): 252-9.
[26]
Papp N, Szilvássy B, Abrankó L, et al. Main quality attributes and antioxidants in Hungarian sour cherries: Identification of genotypes with enhanced functional properties. Int J Food Sci Technol 2010; 45(2): 395-402.
[27]
Piccirillo C, Demiray S, Franco AR, et al. High added-value compounds with antibacterial properties from Ginja cherries by-products. Waste Biomass Valoriz 2010; 1(2): 209-17.
[28]
Diaz-Mula HM, Castillo S, Martinez-Romero D, et al. Sensory, nutritive and functional properties of sweet cherry as affected by cultivar and ripening stage. Food Sci Technol Int 2009; 15(6): 535-43.
[29]
Tavaud M, Zanetto A, David JL, et al. Genetic relationships between diploid and allotetraploid cherry species (Prunus avium, Prunus x gondouinii and Prunus cerasus). Heredity 2004; 93(6): 631-8.
[30]
Patras A, Brunton NP, O’Donnell C, et al. Effect of thermal processing on anthocyanin stability in foods: Mechanisms and kinetics of degradation. Trends Food Sci Technol 2010; 21(1): 3-11.
[31]
Mulabagal V, Lang GA, Dewitt DL, et al. Anthocyanin content, lipid peroxidation and cyclooxygenase enzyme inhibitory activities of sweet and sour cherries. J Agric Food Chem 2009; 57(4): 1239-46.
[32]
Demir T. Determination of carotenoid, organic acid and sugar content in some sweet cherry cultivars grown in Sakarya, Turkey. J Food Agric Environ 2013; 11(2): 73-5.
[33]
Szajdek A, Borowska EJ. Bioactive compounds and health-promoting properties of berry fruits: A review. Plant Foods Hum Nutr 2008; 63(4): 147-53.
[34]
Duarte AP, Silva BM. Nutritional and phytochemical potential of “Prunus avium L.”. In: Gupta VK, EdNatural products: research reviews. India: Daya Publishing House 2014; pp. 185-202.
[35]
Turner J, Seavert C, Colonna A, et al. Consumer sensory evaluation of sweet cherry cultivars in Oregon, U.S.A. Acta Hortic 2007; 795(795): 227-33.
[36]
Vavoura MV, Badeka AV, Kontakos S, et al. Characterization of four popular sweet cherry cultivars grown in Greece by volatile compound and physicochemical data analysis and sensory evaluation. Molecules 2015; 20(2): 1922-40.
[37]
Truswell S, Milne R. Energy and macronutrients. In: Mann J,Truswee A, Eds Essentials of human nutrition. 2nd ed. NY: Oxford University Press 2003; pp. 11-79.
[38]
Crisosto CH, Crisosto GM, Metheney P. Consumer acceptance of “Brooks” and “Bing” cherries is mainly dependent on fruit SSC and visual skin color. Postharvest Biol Technol 2003; 28(1): 159-67.
[39]
Belitz HD, Grosch W, Schieberle P. Fruits and fruit products. In:Belitz HD, Grosch W, Schieberle P, EdsFood Chemistry. 4th ed. Berlin: Springer Science & Business Media 2009; pp. 807-936.
[41]
Ballistreri G, Continella A, Gentile A, et al. Fruit quality and bioactive compounds relevant to human health of sweet cherry (Prunus avium L.) cultivars grown in Italy. Food Chem 2013; 140(4): 630-8.
[42]
Van Gorsel H, Li C, Kerbel EL, et al. Compositional characterization of prune juice. J Agric Food Chem 1992; 40(5): 784-9.
[43]
Kader AA, Barrett DM. Classification, composition of fruits and postharvest maintenance of quality. In: Barrett MD, Somogyi L,Ramaswamy HS, Eds Processing fruits: Science and technology. 2nd ed. Boca Raton, Florida: CRC Press 2004; pp. 3-22.
[44]
Dembitsky VM, Poovarodom S, Leontowicz H, et al. The multiple nutrition properties of some exotic fruits: Biological activity and active metabolites. Food Res Int 2011; 44(7): 1671-701.
[45]
Cubero J, Toribio F, Garrido M, et al. Assays of the amino acid tryptophan in cherries by HPLC-fluorescence. Food Anal Methods 2010; 3(1): 36-9.
[46]
Nelson DL, Cox MM. Amino acids, peptides, and proteins.In:Nelson DL, Cox MM, Eds Lehninger principles of Biochemistry. 4th ed. NY: W.H. Freeman 2011; pp. 75-85.
[47]
Sainio EL, Pulkki K, Young SN. L-Tryptophan: Biochemical, nutritional and pharmacological aspects. Amino Acids 1996; 10(1): 21-47.
[48]
Barros L, Carvalho AM, Morais JS, Ferreira ICFR. Strawberry-tree, blackthorn and rose fruits: Detailed characterisation in nutrients and phytochemicals with antioxidant properties. Food Chem 2010; 120(1): 247-54.
[49]
Das UN. Essential Fatty acids - a review. Curr Pharm Biotechnol 2006; 7(6): 467-82.
[50]
Bastos C, Barros L, Dueñas M, et al. Chemical characterisation and bioactive properties of Prunus avium L.: The widely studied fruits and the unexplored stems. Food Chem 2015; 173: 1045-53.
[51]
Mahmood T, Anwar F, Abbas M, et al. Compositional variation in sugars and organic acids at different maturity stages in selected small fruits from Pakistan. Int J Mol Sci 2012; 13(2): 1380-92.
[52]
Serradilla MJ, Lozano M, Bernalte MJ, et al. Physicochemical and bioactive properties evolution during ripening of “Ambrunés” sweet cherry cultivar. LWT - Food Sci Technol 2011; 44(1): 199-205.
[53]
Steinberg FM, Bearden MM, Keen CL. Cocoa and chocolate flavonoids: Implications for cardiovascular health. J Am Diet Assoc 2003; 103(2): 215-23.
[54]
Burkhardt S, Tan DX, Manchester LC, et al. Detection and quantification of the antioxidant melatonin in Montmorency and Balaton tart cherries (Prunus cerasus). J Agric Food Chem 2001; 49(10): 4898-902.
[55]
Landete JM. Dietary intake of natural antioxidants: Vitamins and polyphenols. Crit Rev Food Sci Nutr 2013; 53(7): 706-21.
[56]
Lim TK. Prunus avium. In: Lim TK, Ed Edible medicinal and non-medicinal plants. Netherlands: Springer 2012; pp. 451-62.
[57]
Kim D, Lee KW, Lee HJ, et al. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolics phytochemicals. J Agric Food Chem 2002; 50(13): 3713-7.
[58]
Zeisel SH, Da Costa KA. Choline: An essential nutrient for public health. Nutr Rev 2009; 67(11): 615-23.
[59]
Fenech M, Baghurst P, Luderer W, et al. Low intake of calcium, folate, nicotinic acid, vitamin E, retinol, β-carotene and high intake of pantothenic acid, biotin and riboflavin are significantly associated with increased genome instability - results from a dietary intake and micronucleus index. Carcinogenesis 2005; 26(5): 991-9.
[60]
Røsjø E, Myhr KM, Løken-Amsrud KI, et al. Increasing serum levels of vitamin A, D and E are associated with alterations of different inflammation markers in patients with multiple sclerosis. J Neuroimmunol 2014; 271(1-2): 60-5.
[61]
Azzi A, Ricciarelli R, Zingg JM. Non-antioxidant molecular functions of α-tocopherol (vitamin E). FEBS Lett 2002; 519(1-3): 8-10.
[62]
Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system: Vitamins A and D take centre stage. Nat Rev Immunol 2008; 8(9): 685-98.
[63]
Poiroux-Gonord F, Bidel LPR, Fanciullino AL, et al. Health benefits of vitamins and secondary metabolites of fruits and vegetables and prospects to increase their concentrations by agronomic approaches. J Agric Food Chem 2010; 58(23): 12065-82.
[64]
Batta A. A review on phytochemicals and their activities. Int J Curr Res Med Sci 2016; 2(1): 20-8.
[65]
Contreras-Calderón J, Calderón-Jaimes L, Guerra-Hernández E, et al. Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Res Int 2011; 44(7): 2047-53.
[66]
Chaovanalikit A, Wrolstad RE. Anthocyanin and polyphenolic composition of fresh and processed cherries. J Food Sci 2004; 69(1): C73-83.
[67]
Arathi BP, Sowmya PRR, Vijay K, et al. Metabolomics of carotenoids: the challenges and prospects - a review. Trends Food Sci Technol 2015; 45(1): 105-17.
[68]
Dias MG, Camões MFGFC, Oliveira L. Carotenoids in traditional Portuguese fruits and vegetables. Food Chem 2009; 113(3): 808-15.
[69]
Porrini M, Riso P, Brusamolino A, et al. Daily intake of a formulated tomato drink affects carotenoid plasma and lymphocyte concentrations and improves cellular antioxidant protection. Br J Nutr 2005; 93(1): 93-9.
[70]
Krinsky NI, Johnson EJ. Carotenoid actions and their relation to health and disease. Mol Aspects Med 2005; 26(6): 459-516.
[71]
Wen YQ, He F, Zhu BQ, et al. Free and glycosidically bound aroma compounds in cherry (Prunus avium L.). Food Chem 2014; 152: 29-36.
[72]
Sun SY, Jiang WG, Zhao YP. Characterization of the aroma-active compounds in five sweet cherry cultivars grown in Yantai (China). Flavour Fragrance J 2010; 25(4): 206-13.
[73]
Serradilla MJ, Martín A, Ruiz-Moyano S, et al. Physicochemical and sensorial characterisation of four sweet cherry cultivars grown in Jerte Valley (Spain). Food Chem 2012; 133(4): 1551-9.
[74]
Ördögh L, Galgóczy L, Krisch J, et al. Antioxidant and antimicrobial activities of fruit juices and pomace extracts against acne-inducing bacteria. Acta Biol Szeged 2010; 54(1): 45-9.
[75]
Huang X, Mazza G. Simultaneous analysis of serotonin, melatonin, piceid and resveratrol in fruits using liquid chromatography tandem mass spectrometry. J Chromatogr A 2011; 1218(25): 3890-9.
[76]
Silber BY, Schmitt JAJ. Effects of tryptophan loading on human cognition, mood, and sleep. Neurosci Biobehav Rev 2010; 34(3): 387-407.
[77]
Feng X, Wang M, Zhao Y, et al. Melatonin from different fruit sources, functional roles, and analytical methods. Trends Food Sci Technol 2014; 37(1): 21-31.
[78]
Paredes SD, Terrón MP, Marchena AM, et al. Tryptophan modulates cell viability, phagocytosis and oxidative metabolism in old ringdoves. Basic Clin Pharmacol Toxicol 2007; 101(1): 56-62.
[79]
Zhdanova IV, Wurtman RJ, Regan MM, et al. Melatonin treatment for age-related insomnia. J Clin Endocrinol Metab 2001; 86(10): 4727-30.
[80]
Hardeland R, Pandi-Perumal SR, Cardinali DP. Melatonin. Int J Biochem Cell Biol 2006; 38(3): 313-6.
[81]
Wang H, Nair MG, Strasburg GM, et al. Novel antioxidant compounds from tart cherries (Prunus cerasus). J Nat Prod 1999; 62(1): 86-8.
[82]
Fürstenberg-Hägg J, Zagrobelny M, Bak S. Plant defense against insect herbivores. Int J Mol Sci 2013; 14(5): 10242-97.
[83]
Ross JA, Kasum CM. Dietary Flavonoids: Bioavailability, metabolic Effects, and safety. Annu Rev Nutr 2002; 22(1): 19-34.
[84]
Thi D, Lien P, Thi P, et al. Antioxidant properties of food natural phenolic compounds - a review. Innov Food Res 2016; 2: 1-5.
[85]
Robbins RJ. Phenolic acids in foods: An overview of analytical methodology. J Agric Food Chem 2003; 51(10): 2866-87.
[86]
Hollman PCH, Cassidy A, Comte B, et al. The biological relevance of direct antioxidant effects of polyphenols for cardiovascular health in humans is not established. J Nutr 2011; 141(5): 989S-1009S.
[87]
Dixon RA, Steele CL. Flavonoids and isoflavonoids - a gold mine for metabolic engineering. Trends Plant Sci 1999; 4(10): 394-400.
[88]
Mattila P, Hellström J, Törrönen R. Phenolic acids in berries, fruits, and beverages. J Agric Food Chem 2006; 54(19): 7193-9.
[89]
Tomás-Barberán FA, Clifford MN. Dietary hydroxybenzoic acid derivatives - nature, occurrence and dietary burden. J Sci Food Agric 2000; 80(7): 1024-32.
[90]
Hayaloglu AA, Demir N. Phenolic compounds, volatiles, and sensory characteristics of twelve sweet cherry (Prunus avium L.) cultivars grown in Turkey. J Food Sci 2016; 81(1): C7-C18.
[91]
Jakobek L, Šeruga M, Šeruga B, Novak I, Medvidović-Kosanović M. Phenolic compound composition and antioxidant activity of fruits of Rubus and Prunus species from Croatia. Int J Food Sci Technol 2009; 44(4): 860-8.
[92]
Jakobek L, Seruga M, Novak I, et al. Flavonols, phenolic acids and antioxidant activity of some red fruits. Dtsch Lebensmitt Rundsch 2007; 103: 369-78.
[93]
Cheng JC, Dai F, Zhou B, et al. Antioxidant activity of hydroxycinnamic acid derivatives in human low density lipoprotein: Mechanism and structure-activity relationship. Food Chem 2007; 104(1): 132-9.
[94]
Xiao ZT, Zhu Q, Zhang HY. Identifying antibacterial targets of flavonoids by comparative genomics and molecular modeling. Open J Genomics 2014; 3(1): 1-8.
[95]
Erlund I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr Res 2004; 24(10): 851-74.
[96]
Setchell KD, Cassidy A. Dietary isoflavones: Biological effects and relevance to human health. J Nutr 1999; 129(3): 758S-67S.
[97]
Cushnie TPT, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents 2005; 26(5): 343-56.
[98]
Sandhar HK, Kumar B, Prasher S, et al. A review of phytochemistry and pharmacology of flavonoids. Int Pharm Sci 2011; 1(1): 25-41.
[99]
Rice-Evans CA, Miller NJ, Paganga G. Antioxidant properties of phenolic compounds. Trends Plant Sci 1997; 2(4): 152-9.
[100]
Wang H, Cao G, Prior RL. Total antioxidant capacity of fruits. J Agric Food Chem 1996; 44(3): 701-5.
[101]
Thilakarathna SH, Vasantha Rupasinghe HP. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 2013; 5(9): 3367-87.
[102]
Giménez MJ, Valverde JM, Valero D, et al. Quality and antioxidant properties on sweet cherries as affected by preharvest salicylic and acetylsalicylic acids treatments. Food Chem 2014; 160: 226-32.
[103]
Dajas F, Andrés ACJ, Florencia A, et al. Neuroprotective actions of flavones and flavonols: Mechanisms and relationship to flavonoid structural features. Cent Nerved. Syst Agents Med Chem 2013; 13(1): 30-5.
[104]
Del Rio D, Rodriguez-Mateos A, Spencer JPE, et al. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 2013; 18(14): 1818-92.
[105]
Silva LR, Costa R. Health benefits of nongallated and gallated flavan-3-ols: A prospectus. In: Kinsey AL, Ed Recent advances in gallate research. NY: Nova Science Publishers 2014; pp. 1-50.
[106]
Manach C, Morand C, Gil-Izquierdo A, et al. Bioavailability in humans of the flavanones hesperidin and narirutin after the ingestion of two doses of orange juice. Eur J Clin Nutr 2003; 57(2): 235-42.
[107]
Borradaile NM, Carroll KK, Kurowska EM. Regulation of HepG2 cell apolipoprotein B metabolism by the citrus flavanones hesperetin and naringenin. Lipids 1999; 34(6): 591-8.
[108]
Wallace TC. Anthocyanins in cardiovasculardisease. Adv Nutr 2011; 2(1): 1-7.
[109]
He J, Giusti MM. Anthocyanins: Natural colorants with health-promoting properties. Annu Rev Food Sci Technol 2010; 1(1): 163-87.
[110]
de Pascual-Teresa S, Moreno DA, García-Viguera C. Flavanols and anthocyanins in cardiovascular health: A review of current evidence. Int J Mol Sci 2010; 11(4): 1679-703.
[111]
Pojer E, Mattivi F, Johnson D, et al. The case for anthocyanin consumption to promote human health: A review. Compr Rev Food Sci Food Saf 2013; 12(5): 483-508.
[112]
Daglia M. Polyphenols as antimicrobial agents. Curr Opin Biotechnol 2012; 23(2): 174-81.
[113]
Cabrera C, Artacho R, Giménez R. Beneficial effects of green tea-a review. J Am Coll Nutr 2006; 25(2): 79-99.
[114]
Furiga A, Lonvaud-Funel A, Dorignac G, et al. In vitro anti-bacte-rial and anti-adherence effects of natural polyphenolic compounds on oral bacteria. J Appl Microbiol 2008; 105(5): 1470-6.
[115]
Ankolekar C, Pinto M, Greene D, et al. Phenolic bioactive modulation by Lactobacillus acidophilus mediated fermentation of cherry extracts for anti-diabetic functionality, Helicobacter pylori inhibition and Probiotic Bifidobacterium longum stimulation. Food Biotechnol 2011; 25(4): 305-35.
[116]
Thiersch M, Rimann M, Panagiotopoulou V, et al. The angiogenic response to PLL-g-PEG-mediated HIF-1α plasmid DNA delivery in healthy and diabetic rats. Biomaterials 2013; 34(16): 4173-82.
[117]
Coccia A, Carraturo A, Mosca L, et al. Effects of methanolic extract of sour cherry (Prunus cerasus L.) on microbial growth. Int J Food Sci Technol 2012; 47(8): 1620-9.
[118]
Hevesi M, Blázovics A, Kállay E, et al. Biological activity of sour cherry fruit on the bacterial flora of human saliva in vitro. Food Technol Biotechnol 2012; 50(1): 117-22.
[119]
Krstić T, Suvajdžić L, Stojanović S, et al. Antimicrobial activity of sour cherry. Agro Food Ind Hi-Tech 2016; 27(1): 56-8.
[120]
Strugala P, Dudra A, Kucharska AZS, et al. Biological activity of the methanol and water extracts of the fruits of anthocyanin-rich plants grown in south-west Poland. Nat Prod Commun 2015; 10(3): 467-74.
[121]
Kołodziejczyk K, Sójka M, Abadias M, et al. Polyphenol composition, antioxidant capacity, and antimicrobial activity of the extracts obtained from industrial sour cherry pomace. Ind Crops Prod 2013; 51: 279-88.
[122]
Bothon FTD, Debiton E, Avlessi F, et al. In vitro biological effects of two anti-diabetic medicinal plants used in Benin as folk medicine. BMC Complement Altern Med 2013; 13(1): 51.
[123]
Cisowska A, Wojnicz D, Hendrich AB. Anthocyanins as antimicrobial agents of natural plant origin. Nat Prod Commun 2011; 6(1): 149-56.
[124]
Wang S, Melnyk JP, Tsao R, et al. How natural dietary antioxidants in fruits, vegetables and legumes promote vascular health. Food Res Int 2011; 44(1): 14-22.
[125]
Moure A, Cruz JM, Franco D, et al. Natural antioxidants from residual sources. Food Chem 2001; 72(2): 145-71.
[126]
Zhang A, Wan L, Wu C, et al. Simultaneous determination of 14 phenolic compounds in grape canes by HPLC-DAD-UV using wavelength switching detection. Molecules 2013; 18(11): 14241-57.
[127]
Wenzel A, Haugen EN, Jackson LC, et al. Anxiety symptoms and disorders at eight weeks postpartum. J Anxiety Disord 2005; 19(3): 295-311.
[128]
González-Gómez D, Lozano M, Fernández-León MF, et al. Sweet cherry phytochemicals: Identification and characterization by HPLC-DAD/ESI-MS in six sweet-cherry cultivars grown in Valle del Jerte (Spain). J Food Compos Anal 2010; 23(6): 533-9.
[129]
Hegedus A, Taller D, Papp N, et al. Fruit antioxidant capacity and self-incompatibility genotype of Ukrainian sweet cherry (Prunus avium L.) cultivars highlight their breeding prospects. Euphytica 2013; 191(1): 153-64.
[130]
Heinonen IM, Meyer AS, Frankel EN. Antioxidant activity of berry phenolics on human low-density lipoprotein and liposome oxidation. J Agric Food Chem 1998; 46(10): 4107-12.
[131]
Gonçalves B, Landbo AK, Knudsen D, et al. Effect of ripeness and postharvest storage on the phenolic profiles of cherries (Prunus avium L.). J Agric Food Chem 2004; 52(3): 523-30.
[132]
Krinsky NI, Yeum KJ. Carotenoid-radical interactions. Biochem Biophys Res Commun 2003; 305(3): 754-60.
[133]
Scalbert A, Manach C, Morand C, et al. Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 2005; 45(4): 287-306.
[134]
Tan DX, Manchester LC, Terron MP, et al. One molecule, many derivatives: A never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 2007; 42(1): 28-42.
[135]
Garrido M, Paredes SD, Cubero J, et al. Jerte valley cherry-enriched diets improve nocturnal rest and increase 6-sulfatoxymelatonin and total antioxidant capacity in the urine of middle-aged and elderly humans. J Gerontol A Biol Sci Med Sci 2010; 65(9): 909-14.
[136]
Pablos MI, Reiter RJ, Ortiz GG, et al. Rhythms of glutathione peroxidase and glutathione reductase in brain of chick and their inhibition by light. Neurochem Int 1998; 32(1): 69-75.
[137]
Paredes SD, Korkmaz A, Manchester LC, et al. Phytomelatonin: A review. J Exp Bot 2009; 60(1): 57-69.
[138]
Langenberg C, Sharp SJ, Franks PW, et al. Gene-lifestyle interaction and type 2 diabetes: The EPIC interact case-cohort study. PLoS Med 2014; 11(5): e1001647.
[139]
Silva LR, Teixeira R. Phenolic profile and biological potential of Endopleura uchi extracts. Asian Pac J Trop Med 2015; 8(11): 889-97.
[140]
Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus - present and future perspectives. Nat Rev Endocrinol 2012; 8(4): 228-36.
[141]
Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 2011; 11(2): 98-107.
[142]
Tadera K, Minami Y, Takamatsu K, et al. Inhibition of α-glucosidase and α-amylase by flavonoids. J Nutr Sci Vitaminol 2006; 52(2): 149-53.
[143]
Lachin T, Reza H. Anti diabetic effect of cherries in alloxan induced diabetic rats. Recent Pat Endocr Metab Immune Drug Discov 2012; 6(1): 67-72.
[144]
Lachin T. Effect of antioxidant extract from cherries on diabetes. Recent Pat Endocr Metab Immune Drug Discov 2014; 8(1): 67-74.
[145]
Cao J, Li X, Liu Y, et al. Bioassay-based isolation and identification of phenolics from sweet cherry that promote active glucose consumption by HepG2 cells. J Food Sci 2015; 80(2): C234-40.
[146]
Sathya A, Siddhuraju P. Role of phenolics as antioxidants, biomolecule protectors and as anti-diabetic factors - evaluation on bark and empty pods of Acacia auriculiformis. Asian Pac J Trop Med 2012; 5(10): 757-65.
[147]
Babu PVA, Liu D, Gilbert ER. Recent advances in understanding the anti-diabetic actions of dietary flavonoids. J Nutr Biochem 2013; 24(11): 1777-89.
[148]
Zheng XK, Zhang L, Wang WW, et al. Anti-diabetic activity and potential mechanism of total flavonoids of Selaginella tamariscina (Beauv.) Spring in rats induced by high fat diet and low dose STZ. J Ethnopharmacol 2011; 137(1): 662-8.
[149]
Vinayagam R, Xu B. Antidiabetic properties of dietary flavonoids: A cellular mechanism review. Nutr Metab (Lond) 2015; 12(1): 1-20.
[150]
Iwal K, Kim MY, Onodera A, et al. α-Glucosidase inhibitory and antihyperglycemic effects of polyphenols in the fruit of Viburnum dilatatum Thunb. J Agric Food Chem 2006; 54(13): 4588-92.
[151]
Yin Z, Wang J, Gu X, et al. Antioxidant and α-glucosidase inhibitory activity of red raspberry (Harrywaters) fruits “in vitro”. Afr J Pharm Pharmacol 2012; 6(45): 3118-23.
[152]
Akkarachiyasit S, Yibchok-Anun S, Wacharasindhu S, et al. In vitro inhibitory effects of cyandin-3-rutinoside on pancreatic α-amylase and its combined effect with acarbose. Molecules 2011; 16(3): 2075-83.
[153]
Jayaprakasam B, Vareed SK, Olson LK, et al. Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. J Agric Food Chem 2005; 53(1): 28-31.
[154]
Bray F, Jemal A, Grey N, et al. Global cancer transitions according to the Human Development Index (2008-2030): A population-based study. Lancet Oncol 2012; 13(8): 790-801.
[155]
Rodriguez-Romaguera J, do Monte FHM, Quirk GJ. Deep brain stimulation of the ventral striatum enhances extinction of conditioned fear. Proc Natl Acad Sci 2012; 109(22): 8764-9.
[156]
Pacifico S, Di Maro A, Petriccione M, et al. Chemical composition, nutritional value and antioxidant properties of autochthonous Prunus avium cultivars from Campania Region. Food Res Int 2014; 64: 188-99.
[157]
Ren W, Qiao Z, Wang H, et al. Flavonoids: Promising anticancer agents. Med Res Rev 2003; 23(4): 519-34.
[158]
Olsson ME, Gustavsson KE, Andersson S, et al. Inhibition of cancer cell proliferation in vitro by fruit and berry extracts and correlations with antioxidant levels. J Agric Food Chem 2004; 52(24): 7264-71.
[159]
Serra AT, Seabra IJ, Braga MEM, et al. Processing cherries (Prunus avium) using supercritical fluid technology. Part 1: Recovery of extract fractions rich in bioactive compounds. J Supercrit Fluids 2010; 55(1): 184-91.
[160]
Moon YJ, Wang X, Morris ME. Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism. Toxicol Vitr 2006; 20(2): 187-210.
[161]
Kang SY, Seeram NP, Nair MG, et al. Tart cherry anthocyanins inhibit tumor development in ApcMin mice and reduce proliferation of human colon cancer cells. Cancer Lett 2003; 194(1): 13-9.
[162]
Wang LS, Stoner G. Anthocyanins and their role in cancer prevention. Cancer Lett 2008; 269(2): 281-90.
[163]
Serra AT, Matias AA, Almeida APC, et al. Processing cherries (Prunus avium) using supercritical fluid technology. Part 2. Eva-luation of SCF extracts as promising natural chemotherapeutical agents. J Supercrit Fluids 2011; 55(3): 1007-13.
[164]
Ruby AJ, Kuttan G, Dinesh Babu K, et al. Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett 1995; 94(1): 79-83.
[165]
Haag JD, Gould MN. Mammary carcinoma regression induced by perillyl alcohol, a hydroxylated analog of limonene. Cancer Chemother Pharmacol 1994; 34(6): 477-83.
[166]
Mills JJ, Chari RS, Boyer IJ, et al. Induction of apoptosis in liver tumors by the monoterpene perillyl alcohol. Cancer Res 1995; 55(5): 979-83.
[167]
Reddy BS, Wynder EL. Metabolic epidemiology of colorectal cancer. Cancer 1977; 39(6): 2533-9.
[168]
Barthelman M, Chen W, Gensler HL, et al. Inhibitory effects of perillyl alcohol on UVB-induced murine skin cancer and AP-1 transactivation. Cancer Res 1998; 58(4): 711-6.
[169]
Lantry LE, Zhang Z, Gao F, et al. Chemopreventive effect of perillyl alcohol on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induced tumorigenesis in (C3H/HeJ X A/J).F1 mouse lung. J Cell Biochem Suppl 1997; 27: 20-5.
[170]
Shi W, Gould MN. Induction of differentiation in neuro-2A cells by the monoterpene perillyl alcohol. Cancer Lett 1995; 95(1-2): 1-6.
[171]
Zhang Z, Zheng H, Liang K, et al. Functional degeneration in dorsal and ventral attention systems in amnestic mild cognitive impairment and Alzheimer’s disease: An fMRI study. Neurosci Lett 2015; 585: 160-5.
[172]
Uttara B, Singh AV, Zamboni P, et al. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 2009; 7(1): 65-74.
[173]
Perrone GG, Tan SX, Dawes IW. Reactive oxygen species and yeast apoptosis. BBA-Mol. Cell Res 2008; 1783(7): 1354-68.
[174]
Vinitha E, Singh HJC, Kakalij RM, et al. Neuroprotective effect of Prunus avium on streptozotocin induced neurotoxicity in mice. Biomed Prev Nutr 2014; 4(4): 519-25.
[175]
Kent K, Charlton K, Roodenrys S, et al. Consumption of anthocyanin-rich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia. Eur J Nutr 2015; 56(1): 333-41.
[176]
Garrido M, Espino J, González-Gómez D, et al. The consumption of a Jerte Valley cherry product in humans enhances mood, and increases 5-hydroxyindoleacetic acid but reduces cortisol levels in urine. Exp Gerontol 2012; 47(8): 573-80.
[177]
Subash S, Essa MM, Al-Adawi S, et al. Neuroprotective effects of berry fruits on neurodegenerative diseases. Neural Regen Res 2014; 9(16): 1557-66.
[178]
Andres-Lacueva C, Shukitt-Hale B, Galli RL, et al. Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutr Neurosci 2005; 8(2): 111-20.
[179]
Kovacsova M, Barta A, Parohova J, et al. Neuroprotective mechanisms of natural polyphenolic compounds. Act Nerv Super Rediviva 2010; 52(3): 181-6.
[180]
Papandreou MA, Dimakopoulou A, Linardaki ZI, et al. Effect of a polyphenol-rich wild blueberry extract on cognitive performance of mice, brain antioxidant markers and acetylcholinesterase activity. Behav Brain Res 2009; 198(2): 352-8.
[181]
Vepsäläinen S, Koivisto H, Pekkarinen E, et al. Anthocyanin-enriched bilberry and blackcurrant extracts modulate amyloid precursor protein processing and alleviate behavioral abnormalities in the APP/PS1 mouse model of Alzheimer’s disease. J Nutr Biochem 2013; 24(1): 360-70.
[182]
Youdim KA, Joseph JA. A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: a multiplicity of effects. Free Radic Biol Med 2001; 30(6): 583-94.
[183]
Levine A, Zagoory-Sharon O, Feldman R, et al. Measuring cortisol in human psychobiological studies. Physiol Behav 2007; 90(1): 43-53.
[184]
Koelink PJ, Overbeek SA, Braber S, et al. Targeting chemokine receptors in chronic inflammatory diseases: an extensive review. Pharmacol Ther 2012; 133(1): 1-18.
[185]
Bottazzi B, Doni A, Garlanda C, et al. An integrated view of humoral innate immunity: Entraxins as a paradigm. Annu Rev Immunol 2010; 28(1): 157-83.
[186]
Shashank K, Abhay K. Chemistry and biological activities of flavonoids: An overview. Sci World J 2013; 2013(11-12): 162750.
[187]
Steenge GR, Verhoef P, Katan MB. Human nutrition and metabolism betaine supplementation lowers plasma homocysteine in healthy men and women. J Nutr 2003; 133(5): 1291-5.
[188]
He YH, Zhou J, Wang YS, et al. Anti-inflammatory and anti-oxidative effects of cherries on Freund’s adjuvant-induced arthritis in rats. Scand J Rheumatol 2006; 35(5): 356-8.
[189]
Seeram NP, Momin RA, Nair MG, et al. Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine 2001; 8(5): 362-9.
[190]
Bell PG, Mchugh MP, Stevenson E, et al. The role of cherries in exercise and health. Scand J Med Sci Sports 2014; 24(3): 477-90.
[191]
Nyyssonen K, Parviainen MT, Salonen R, et al. Vitamin C deficiency and risk of myocardial infarction: Prospective population study of men from Eastern Finland. BMJ 1997; 314(7081): 634-8.
[192]
Rissanen TH, Voutilainen S, Nyyssönen K, et al. Serum lycopene concentrations and carotid atherosclerosis: the Kuopio ischaemic heart disease risk factor study. Am J Clin Nutr 2003; 77(1): 133-8.
[193]
Seymour EM, Warber SM, Kirakosyan A, et al. Anthocyanin pharmacokinetics and dose-dependent plasma antioxidant pharmacodynamics following whole tart cherry intake in healthy humans. J Funct Foods 2014; 11(C): 509-16.
[194]
Bak I, Lekli I, Juhasz B, et al. Cardioprotective mechanisms of Prunus cerasus (sour cherry) seed extract against ischemia-reperfusion-induced damage in isolated rat hearts. Am J Physiol Heart Circ Physiol 2006; 291(3): H1329-36.
[195]
Toufektsian MC, de Lorgeril M, Nagy N, et al. Chronic dietary intake of plant-derived anthocyanins protects the rat heart against ischemia-reperfusion injury. J Nutr 2008; 138(4): 747-52.
[196]
Riaz M, Zia-Ul-Haq M, Saad B. The role of anthocyanins in health as antioxidant, in bone health and as heart protecting agents. In: Zia Ul Haq M, Riaz M, Saad B, EdsAnthocyanins and human health: biomolecular and therapeutic aspects. Switzerland: Springer International Publishing 2016; pp. 87-107.
[197]
Nandave M, Ojha SK, Arya DS. Protective role of flavonoids in cardiovascular diseases. Nat Prod Rad 2005; 4(3): 166-76.
[198]
Martin C, Zhang Y, Tonelli C, et al. Plants, diet, and health. Annu Rev Plant Biol 2013; 64: 19-46.
[199]
Han X, Shen T, Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci 2007; 8(9): 950-88.
[200]
Hertog MG, Hollman PC, Katan MB, et al. Intake of potentially anticarcinogenic flavonoids and their determinants in adults in The Netherlands. Nutr Cancer 1993; 20(1): 21-9.
[201]
Gey K, Puska P, Jordan P, et al. Inverse correlation between plasma vitamin E and mortality from ischemic heart disease in cross-cultural epidemiology. Am J Clin Nutr 1991; 53(1)(Suppl.): 326S-34S.
[202]
Kanbay M, Bayram Y, Solak Y, et al. Dietary potassium: A key mediator of the cardiovascular response to dietary sodium chloride. J Am Soc Hypertens 2013; 7(5): 395-400.