[1]
Kelkar, S.S.; Reineke, T.M. Theranostics: combining imaging and therapy. Bioconjug. Chem., 2011, 22(10), 1879-1903.
[2]
Muthu, M.S.; Leong, D.T.; Mei, L.; Feng, S.S. Nanotheranostics - application and further development of nanomedicine strategies for advanced theranostics. Theranostics, 2014, 4(6), 660-677.
[3]
Huang, P.; Lin, J.; Wang, X.; Wang, Z.; Zhang, C.; He, M.; Wang, K.; Chen, F.; Li, Z.; Shen, G.; Cui, D.; Chen, X. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv. Mater., 2012, 24(37), 5104-5110.
[4]
Tanner, P.; Baumann, P.; Enea, R.; Onaca, O.; Palivan, C.; Meier, W. Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles. Acc. Chem. Res., 2011, 44(10), 1039-1049.
[5]
Ma, X.; Zhao, Y.; Liang, X.J. Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc. Chem. Res., 2011, 44(10), 1114-1122.
[6]
Jia, F.; Liu, X.; Li, L.; Mallapragada, S.; Narasimhan, B.; Wang, Q. Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents. J. Control. Release, 2013, 172(3), 1020-1034.
[7]
Li, F.; Bae, B.C.; Na, K. Acetylated hyaluronic acid/photosensitizer conjugate for the preparation of nanogels with controllable phototoxicity: synthesis, characterization, autophotoquenching properties, and in vitro phototoxicity against HeLa cells. Bioconjug. Chem., 2010, 21(7), 1312-1320.
[8]
Lemieux, P.; Vinogradov, S.V.; Gebhart, C.L.; Guérin, N.; Paradis, G.; Nguyen, H.K.; Ochietti, B.; Suzdaltseva, Y.G.; Bartakova, E.V.; Bronich, T.K.; St-Pierre, Y.; Alakhov, V.Y.; Kabanov, A.V. Block and graft copolymers and NanoGel copolymer networks for DNA delivery into cell. J. Drug Target., 2000, 8(2), 91-105.
[9]
Vinogradov, S.; Batrakova, E.; Kabanov, A. Poly (ethylene glycol)–polyethyleneimine NanoGel™ particles, novel drug delivery systems for antisense oligonucleotides. Colloid Surface B., 1999, 16(1–4), 291-304.
[10]
Sasaki, Y.; Akiyoshi, K. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. Chem. Rec., 2010, 10(6), 366-376.
[11]
Sultana, F. Manirujjaman; Imran-Ul-Haque; Arafat, M.; Sharmin, S. An overview of nanogel drug delivery system. J. Appl. Pharm. Sci., 2013, 3(8), 95-105.
[12]
Molina, M.; Asadian-Birjand, M.; Balach, J.; Bergueiro, J.; Miceli, E.; Calderón, M. Stimuli-responsive nanogel composites and their application in nanomedicine. Chem. Soc. Rev., 2015, 44(17), 6161-6186.
[13]
Liang, R.; Wei, M.; Evans, D.G.; Duan, X. Inorganic nanomaterials for bioimaging, targeted drug delivery and therapeutics. Chem. Commun. (Camb.), 2014, 50(91), 14071-14081.
[14]
Zhang, C.L.; Yu, S.H. Nanoparticles meet electrospinning: recent advances and future prospects. Chem. Soc. Rev., 2014, 43(13), 4423-4448.
[15]
Xia, Y.; Li, W.; Cobley, C.M.; Chen, J.; Xia, X.; Zhang, Q.; Yang, M.; Cho, E.C.; Brown, P.K. Gold nanocages: from synthesis to theranostic applications. Acc. Chem. Res., 2011, 44(10), 914-924.
[16]
Huang, P.; Rong, P.; Lin, J.; Li, W.; Yan, X.; Zhang, M.G.; Nie, L.; Niu, G.; Lu, J.; Wang, W.; Chen, X. Triphase interface synthesis of plasmonic gold bellflowers as near-infrared light mediated acoustic and thermal theranostics. J. Am. Chem. Soc., 2014, 136(23), 8307-8313.
[17]
Ling, D.; Hyeon, T. Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small, 2013, 9(9-10), 1450-1466.
[18]
Cai, H.; Yao, P. In situ preparation of gold nanoparticle-loaded lysozyme-dextran nanogels and applications for cell imaging and drug delivery. Nanoscale, 2013, 5(7), 2892-2900.
[19]
Rejinold, N.S.; Ranjusha, R.; Balakrishnan, A.; Mohammed, N.; Jayakumar, R. Gold–chitin–manganese dioxide ternary composite nanogels for radio frequency assisted cancer therapy. RSC Advances, 2014, 4(11), 5819-5825.
[20]
Zhu, H.; Li, Y.; Qiu, R.; Shi, L.; Wu, W.; Zhou, S. Responsive fluorescent Bi(2)O(3)@PVA hybrid nanogels for temperature-sensing, dual-modal imaging, and drug delivery. Biomaterials, 2012, 33(10), 3058-3069.
[21]
Pich, A.; Zhang, F.; Shen, L.; Berger, S.; Ornatsky, O.; Baranov, V.; Winnik, M.A. Biocompatible hybrid nanogels. Small, 2008, 4(12), 2171-2175.
[22]
Sasaki, Y.; Akiyoshi, K. Self-assembled nanogel engineering for advanced biomedical technology. Chem. Lett., 2012, 41(3), 202-208.
[23]
Raemdonck, K.; Demeester, J.; Smedt, S.D. Advanced nanogel engineering for drug delivery. Soft Matter, 2008, 5(4), 707-715.
[24]
Wang, X.; Niu, D.; Wu, Q.; Bao, S.; Su, T.; Liu, X.; Zhang, S.; Wang, Q. Iron oxide/manganese oxide co-loaded hybrid nanogels as pH-responsive magnetic resonance contrast agents. Biomaterials, 2015, 53, 349-357.
[25]
Katagiri, K.; Ohta, K.; Sako, K.; Inumaru, K.; Hayashi, K.; Sasaki, Y.; Akiyoshi, K. Development and potential theranostic applications of a self‐assembled hybrid of magnetic nanoparticle clusters with polysaccharide nanogels. ChemPlusChem, 2014, 79(11), 1631-1637.
[26]
Wang, H.; Ke, F.; Mararenko, A.; Wei, Z.; Banerjee, P.; Zhou, S. Responsive polymer-fluorescent carbon nanoparticle hybrid nanogels for optical temperature sensing, near-infrared light-responsive drug release, and tumor cell imaging. Nanoscale, 2014, 6(13), 7443-7452.
[27]
Chen, L.; Xue, Y.; Xia, X.; Song, M.; Huang, J.; Zhang, H.; Yu, B.; Long, S.; Liu, Y.; Liu, L. A redox stimuli-responsive superparamagnetic nanogel with chemically anchored DOX for enhanced anticancer efficacy and low systemic adverse effects. J. Mater. Chem. B, 2015, 3(46), 8949-8962.
[28]
Kawasaki, R.; Sasaki, Y.; Katagiri, K.; Mukai, S.A.; Sawada, S.; Akiyoshi, K. Magnetically guided protein transduction by hybrid nanogel chaperones with iron oxide nanoparticles. Angew. Chem. Int. Ed. Engl., 2016, 55(38), 11377-11381.
[29]
Wang, X.; Niu, D.; Li, P.; Wu, Q.; Bo, X.; Liu, B.; Bao, S.; Su, T.; Xu, H.; Wang, Q. Dual-enzyme loaded multifunctional hybrid nanogel system for pathological responsive ultrasound imaging and T2-weighted magnetic resonance imaging. ACS Nano, 2015, 9(6), 5646-5656.
[30]
Wang, H.; Di, J.; Sun, Y.; Fu, J.; Wei, Z.; Matsui, H.; Alejandra, D.C.A.; Zhou, S. Biocompatible PEG-chitosan@carbon dots hybrid nanogels for two‐photon fluorescence imaging, near‐infrared light/pH dual‐responsive drug carrier, and synergistic therapy. Adv. Funct. Mater., 2015, 25(34), 5537-5547.
[31]
Sanchez, C.; Julián, B.; Belleville, P.; Popall, M. Applications of hybrid organic–inorganic nanocomposites. J. Mater. Chem., 2005, 15(35-36), 3559-3592.
[32]
Riedinger, A.; Pernia, L.M.; Deka, S.R.; George, C.; Franchini, I.R.; Falqui, A.; Cingolani, R.; Pellegrino, T. “Nanohybrids” based on pH-responsive hydrogels and inorganic nanoparticles for drug delivery and sensor applications. Nano Lett., 2011, 11(8), 3136-3141.
[33]
Jiang, L.; Zhou, Q.; Mu, K.; Xie, H.; Zhu, Y.; Zhu, W.; Zhao, Y.; Xu, H.; Yang, X. pH/temperature sensitive magnetic nanogels conjugated with Cy5.5-labled lactoferrin for MR and fluorescence imaging of glioma in rats. Biomaterials, 2013, 34(30), 7418-7428.
[34]
Su, S.; Wang, H.; Liu, X.; Wu, Y.; Nie, G. iRGD-coupled responsive fluorescent nanogel for targeted drug delivery. Biomaterials, 2013, 34(13), 3523-3533.
[35]
Kim, S.; Lee, D.J.; Kwag, D.S.; Lee, U.Y.; Youn, Y.S.; Lee, E.S. Acid pH-activated glycol chitosan/fullerene nanogels for efficient tumor therapy. Carbohydr. Polym., 2014, 101(1), 692-698.
[36]
Kawano, T.; Niidome, Y.; Mori, T.; Katayama, Y.; Niidome, T. PNIPAM gel-coated gold nanorods for targeted delivery responding to a near-infrared laser. Bioconjug. Chem., 2009, 20(2), 209-212.
[37]
Jalani, G.; Naccache, R.; Rosenzweig, D.H.; Haglund, L.; Vetrone, F.; Cerruti, M. Photocleavable hydrogel coated upconverting nanoparticles, a multifunctional theranostic platform for NIR imaging and on-demand macromolecular delivery. J. Am. Chem. Soc., 2016, 138(3), 1078-1083.
[38]
Wu, W.; Shen, J.; Banerjee, P.; Zhou, S. Chitosan-based responsive hybrid nanogels for integration of optical pH-sensing, tumor cell imaging and controlled drug delivery. Biomaterials, 2010, 31(32), 8371-8381.
[39]
Goswami, N.; Lin, F.; Liu, Y.; Leong, D.T.; Xie, J. Highly luminescent thiolated gold nanoclusters impregnated in nanogel. Chem. Mater., 2016, 28(11), 4009-4016.
[40]
Maya, S.; Sarmento, B.; Nair, A.; Rejinold, N.S.; Nair, S.V.; Jayakumar, R. Smart stimuli sensitive nanogels in cancer drug delivery and imaging: a review. Curr. Pharm. Des., 2013, 19(41), 7203-7218.
[41]
Ma, Y.; Ge, Y.; Li, L. Advancement of multifunctional hybrid nanogel systems: Construction and application in drug co-delivery and imaging technique. Mater. Sci. Eng. C Mater. Biol. Appl., 2017, 71, 1281-1292.
[42]
Ling, D.; Hackett, M.J.; Hyeon, T. Cancer imaging: Lighting up tumours. Nat. Mater., 2014, 13(2), 122-124.
[43]
Ling, D.; Park, W.; Park, S.J.; Lu, Y.; Kim, K.S.; Hackett, M.J.; Kim, B.H.; Yim, H.; Jeon, Y.S.; Na, K.; Hyeon, T. Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J. Am. Chem. Soc., 2014, 136(15), 5647-5655.
[44]
Xia, H.; Li, F.; Hu, X.; Park, W.; Wang, S.; Jang, Y.; Du, Y.; Baik, S.; Cho, S.; Kang, T.; Kim, D.H.; Ling, D.; Hui, K.M.; Hyeon, T. pH-sensitive Pt nanocluster assembly overcomes cisplatin resistance and heterogeneous stemness of hepatocellular carcinoma. ACS Cent. Sci., 2016, 2(11), 802-811.
[45]
Wu, W.; Aiello, M.; Zhou, T.; Berliner, A.; Banerjee, P.; Zhou, S. In-situ immobilization of quantum dots in polysaccharide-based nanogels for integration of optical pH-sensing, tumor cell imaging, and drug delivery. Biomaterials, 2010, 31(11), 3023-3031.
[46]
Wu, W.; Zhou, T.; Berliner, A.; Banerjee, P.; Zhou, S. Smart core−shell hybrid nanogels with Ag nanoparticle core for cancer cell imaging and gel shell for pH-regulated drug delivery. Chem. Mater., 2010, 22(22), 1966-1976.
[47]
Yahia-Ammar, A.; Sierra, D.; Mérola, F.; Hildebrandt, N.; Le, G.X. Self-assembled gold nanoclusters for bright fluorescence imaging and enhanced drug delivery. ACS Nano, 2016, 10(2), 2591-2599.
[48]
Huo, M.; Yuan, J.; Tao, L.; Wei, Y. Redox-responsive polymers for drug delivery, from molecular design to applications. Polym. Chem., 2014, 5(5), 1519-1528.
[49]
Cook, J.A.; Gius, D.; Wink, D.A.; Krishna, M.C.; Russo, A.; Mitchell, J.B. Oxidative stress, redox, and the tumor microenvironment. Semin. Radiat. Oncol., 2004, 14(3), 259-266.
[50]
Kuppusamy, P.; Li, H.; Ilangovan, G.; Cardounel, A.J.; Zweier, J.L.; Yamada, K.; Krishna, M.C.; Mitchell, J.B. Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res., 2002, 62(1), 307-312.
[51]
Maciel, D.; Figueira, P.; Xiao, S.; Hu, D.; Shi, X.; Rodrigues, J.; Tomás, H.; Li, Y. Redox-responsive alginate nanogels with enhanced anticancer cytotoxicity. Biomacromolecules, 2013, 14(9), 3140-3146.
[52]
Brülisauer, L.; Gauthier, M.A.; Leroux, J.C. Disulfide-containing parenteral delivery systems and their redox-biological fate. J. Control. Release, 2014, 195, 147-154.
[53]
Qiao, L.; Wang, X.; Gao, Y.; Wei, Q.; Hu, W.; Wu, L.; Li, P.; Zhu, R.; Wang, Q. Laccase-mediated formation of mesoporous silica nanoparticle based redox stimuli-responsive hybrid nanogels as a multifunctional nanotheranostic agent. Nanoscale, 2016, 8(39), 17241-17249.
[54]
Schmaljohann, D. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev., 2006, 58(15), 1655-1670.
[55]
Koc, K.; Alveroglu, E. Tuning the gel size and LCST of N-isopropylacrylamide nanogels by anionic fluoroprobe. Colloid Polym. Sci., 2016, 294(2), 285-290.
[56]
van der Zee, J. Heating the patient: a promising approach? Ann. Oncol., 2002, 13(8), 1173-1184.
[57]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[58]
Boisselier, E.; Astruc, D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev., 2009, 38(6), 1759-1782.
[59]
Zhu, C.H.; Lu, Y.; Chen, J.F.; Yu, S.H. Photothermal
poly(N-isopropylacrylamide)/Fe3O4 nanocomposite hydrogel
as a movable position heating source under remote control. Small, 2014, 10(14), 2796-2800, 2741.
[60]
Zhu, C.; Lu, Y.; Peng, J.; Chen, J.; Yu, S. Photothermally Sensitive Poly (N-isopropylacrylamide)/Graphene Oxide Nanocomposite Hydrogels as Remote Light-Controlled Liquid Microvalves. Adv. Funct. Mater., 2012, 22(19), 4017-4022.
[61]
Guo, L.; Yan, D.D.; Yang, D.; Li, Y.; Wang, X.; Zalewski, O.; Yan, B.; Lu, W. Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles. ACS Nano, 2014, 8(6), 5670-5681.
[62]
Huang, X. EI-Sayed, I.H.; Qian, W.; EI-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc., 2006, 8(6), 5670-5681.
[63]
Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.T.; Liu, Z. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett., 2010, 10(9), 3318-3323.
[64]
Zhao, X.; Wang, T.; Liu, W.; Wang, C.; Wang, D.; Shang, T.; Shen, L.; Ren, L. Multifunctional Au@IPN-pNIPAAm nanogels for cancer cell imaging and combined chemo-photothermal treatment. J. Mater. Chem., 2011, 21(20), 7240-7247.
[65]
Zhang, Z.; Wang, J.; Nie, X.; Wen, T.; Ji, Y.; Wu, X.; Zhao, Y.; Chen, C. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J. Am. Chem. Soc., 2014, 136(20), 7317-7326.
[66]
Chen, R.; Ling, D.; Zhao, L.; Wang, S.; Liu, Y.; Bai, R.; Baik, S.; Zhao, Y.; Chen, C.; Hyeon, T. Parallel Comparative studies on mouse toxicity of oxide nanoparticle- and gadolinium-based T1 MRI contrast agents. ACS Nano, 2015, 9(12), 12425-12435.
[67]
Kim, B.H.; Lee, N.; Kim, H.; An, K.; Park, Y.I.; Choi, Y.; Shin, K.; Lee, Y.; Kwon, S.G.; Na, H.B.; Park, J.G.; Ahn, T.Y.; Kim, Y.W.; Moon, W.K.; Choi, S.H.; Hyeon, T. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J. Am. Chem. Soc., 2011, 133(32), 12624-12631.
[68]
Na, H.B.; Song, I.C.; Hyeon, T. Inorganic nanoparticles for MRI contrast agents. Adv. Mater., 2009, 21(21), 2133-2148.
[69]
Adriane, K.; Huang, J.; Ding, G.; Chen, J.; Liu, Y. Self assembled magnetic PVP/PVA hydrogel microspheres; magnetic drug targeting of VX2 auricular tumours using pingyangmycin. J. Drug Target., 2006, 14(4), 243-253.
[70]
Oliveira, H.; Pérez-Andrés, E.; Thevenot, J.; Sandre, O.; Berra, E.; Lecommandoux, S. Magnetic field triggered drug release from polymersomes for cancer therapeutics. J. Control. Release, 2013, 169(3), 165-170.
[71]
Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18), 3995-4021.
[72]
Purushotham, S.; Ramanujan, R.V. Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy. Acta Biomater., 2010, 6(2), 502-510.
[73]
Wang, H.; Yi, J.; Mukherjee, S.; Banerjee, P.; Zhou, S. Magnetic/NIR-thermally responsive hybrid nanogels for optical temperature sensing, tumor cell imaging and triggered drug release. Nanoscale, 2014, 6(21), 13001-13011.
[74]
Chang, B.; Chen, D.; Wang, Y.; Chen, Y.; Jiao, Y.; Sha, X.; Yang, W. Bioresponsive controlled drug release based on mesoporous silica nanoparticles coated with reductively sheddable polymer shell. Chem. Mater., 2013, 25(4), 574-585.
[75]
Chang, B.; Sha, X.; Guo, J.; Jiao, Y.; Wang, C.; Yang, W. Thermo and pH dual responsive, polymer shell coated, magnetic mesoporous silica nanoparticles for controlled drug release. J. Mater. Chem., 2011, 21(25), 9239-9247.
[76]
Ghorbani, M.; Hamishehkar, H.; Arsalani, N.; Entezami, A.A. A novel dual-responsive core-crosslinked magnetic-gold nanogel for triggered drug release. Mater. Sci. Eng. C, 2016, 68(1), 436-444.
[77]
Yang, J.; Yao, M.H.; Wen, L.; Song, J.T.; Zhang, M.Z.; Zhao, Y.D.; Liu, B. Multifunctional quantum dot-polypeptide hybrid nanogel for targeted imaging and drug delivery. Nanoscale, 2014, 6(19), 11282-11292.