摘要
癌症是现代世界最致命的疾病之一。 过去十年见证了通过免疫疗法治疗癌症的巨大进步。 实现抗癌免疫力的一个非常有希望的手段是阻断免疫检查点途径 - 癌细胞将其自身伪装成人体的常规成分所采用的机制。 许多评论文章描述了目前正在进行广泛临床评估的各种药剂。 然而,虽然检查点阻断对于广泛的癌症类型普遍有效,并且大多数不受某些基因突变状态的限制,但只有少数患者获得完全反应。 在这篇综述中,我们总结了抗体和小分子形式的免疫检查点抑制剂的基本原理,并讨论了抗药性的潜在机制,这可能为进一步研究提供指导,以实现这些抑制剂更高的临床疗效。
关键词: 免疫疗法,检查点封锁,T细胞,CTLA-4,PD-1,耐药性。
[1]
Chabner, B.A.; Roberts, T.G., Jr Timeline: Chemotherapy and the war on cancer. Nat. Rev. Cancer, 2005, 5(1), 65-72.
[http://dx.doi.org/10.1038/nrc1529] [PMID: 15630416]
[http://dx.doi.org/10.1038/nrc1529] [PMID: 15630416]
[2]
Malet-Martino, M.; Martino, R. Clinical studies of three oral prodrugs of 5-fluorouracil (capecitabine, UFT, S-1): a review. Oncologist, 2002, 7(4), 288-323.
[http://dx.doi.org/10.1634/theoncologist.7-4-288] [PMID: 12185293]
[http://dx.doi.org/10.1634/theoncologist.7-4-288] [PMID: 12185293]
[3]
Thomas, A.; Liu, S.V.; Subramaniam, D.S.; Giaccone, G. Refining the treatment of NSCLC according to histological and molecular subtypes. Nat. Rev. Clin. Oncol., 2015, 12(9), 511-526.
[http://dx.doi.org/10.1038/nrclinonc.2015.90] [PMID: 25963091]
[http://dx.doi.org/10.1038/nrclinonc.2015.90] [PMID: 25963091]
[4]
Zhang, J.; Yang, P.L.; Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer, 2009, 9(1), 28-39.
[http://dx.doi.org/10.1038/nrc2559] [PMID: 19104514]
[http://dx.doi.org/10.1038/nrc2559] [PMID: 19104514]
[5]
Barouch-Bentov, R.; Sauer, K. Mechanisms of drug resistance in kinases. Expert Opin. Investig. Drugs, 2011, 20(2), 153-208.
[http://dx.doi.org/10.1517/13543784.2011.546344] [PMID: 21235428]
[http://dx.doi.org/10.1517/13543784.2011.546344] [PMID: 21235428]
[6]
SH, G. Efficacy of nivolumab in patients with previously
traeted ad-vanced non-small cell lung cancer: subpopulation
response analysis in a phase I trial. Presentation: IASLC
15th World Conference on Lung Can-cer, Sydney, Australia, 2013.
[7]
Schadendorf, D.; Hodi, F.S.; Robert, C.; Weber, J.S.; Margolin, K.; Hamid, O.; Patt, D.; Chen, T.T.; Berman, D.M.; Wolchok, J.D. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol., 2015, 33(17), 1889-1894.
[http://dx.doi.org/10.1200/JCO.2014.56.2736] [PMID: 25667295]
[http://dx.doi.org/10.1200/JCO.2014.56.2736] [PMID: 25667295]
[8]
Lebbé, C.; Weber, J.S.; Maio, M.; Neyns, B.; Harmankaya, K.; Hamid, O.; O’Day, S.J.; Konto, C.; Cykowski, L.; McHenry, M.B.; Wolchok, J.D. Survival follow-up and ipilimumab retreatment of patients with advanced melanoma who received ipilimumab in prior phase II studies. Ann. Oncol., 2014, 25(11), 2277-2284.
[http://dx.doi.org/10.1093/annonc/mdu441] [PMID: 25210016]
[http://dx.doi.org/10.1093/annonc/mdu441] [PMID: 25210016]
[9]
McCarthy, E.F. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop. J., 2006, 26, 154-158.
[PMID: 16789469]
[PMID: 16789469]
[10]
Hollinshead, A.C.; Stewart, T.H. Specific and nonspecific immunotherapy as an adjunct to curative surgery for cancer of the lung. Yale J. Biol. Med., 1981, 54(5), 367-379.
[PMID: 7039148]
[PMID: 7039148]
[11]
Rosenberg, S.A.; Restifo, N.P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science, 2015, 348(6230), 62-68.
[http://dx.doi.org/10.1126/science.aaa4967] [PMID: 25838374]
[http://dx.doi.org/10.1126/science.aaa4967] [PMID: 25838374]
[12]
Guo, C.; Manjili, M.H.; Subjeck, J.R.; Sarkar, D.; Fisher, P.B.; Wang, X.Y. Therapeutic cancer vaccines: past, present, and future. Adv. Cancer Res., 2013, 119, 421-475.
[http://dx.doi.org/10.1016/B978-0-12-407190-2.00007-1] [PMID: 23870514]
[http://dx.doi.org/10.1016/B978-0-12-407190-2.00007-1] [PMID: 23870514]
[13]
Gajewski, T.F.; Schreiber, H.; Fu, Y.X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol., 2013, 14(10), 1014-1022.
[http://dx.doi.org/10.1038/ni.2703] [PMID: 24048123]
[http://dx.doi.org/10.1038/ni.2703] [PMID: 24048123]
[14]
Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer, 2012, 12(4), 252-264.
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
[15]
Rivoltini, L.; Carrabba, M.; Huber, V.; Castelli, C.; Novellino, L.; Dalerba, P.; Mortarini, R.; Arancia, G.; Anichini, A.; Fais, S.; Parmiani, G. Immunity to cancer: attack and escape in T lymphocyte-tumor cell interaction. Immunol. Rev., 2002, 188, 97-113.
[http://dx.doi.org/10.1034/j.1600-065X.2002.18809.x] [PMID: 12445284]
[http://dx.doi.org/10.1034/j.1600-065X.2002.18809.x] [PMID: 12445284]
[16]
Renkvist, N.; Castelli, C.; Robbins, P.F.; Parmiani, G. A listing of human tumor antigens recognized by T cells. Cancer Immunol. Immunother., 2001, 50(1), 3-15.
[http://dx.doi.org/10.1007/s002620000169] [PMID: 11315507]
[http://dx.doi.org/10.1007/s002620000169] [PMID: 11315507]
[17]
Lipson, E.J.; Drake, C.G. Ipilimumab: an anti-CTLA-4 antibody for metastatic melanoma. Clin. Cancer Res., 2011, 17(22), 6958-6962.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1595] [PMID: 21900389]
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1595] [PMID: 21900389]
[18]
Paddock, L.E.; Lu, S.E.; Bandera, E.V.; Rhoads, G.G.; Fine, J.; Paine, S.; Barnhill, R.; Berwick, M. Skin self-examination and long-term melanoma survival. Melanoma Res., 2016, 26(4), 401-408.
[http://dx.doi.org/10.1097/CMR.0000000000000255] [PMID: 26990272]
[http://dx.doi.org/10.1097/CMR.0000000000000255] [PMID: 26990272]
[19]
Sharon, E.; Streicher, H.; Goncalves, P.; Chen, H.X. Immune checkpoint inhibitors in clinical trials. Chin. J. Cancer, 2014, 33(9), 434-444.
[http://dx.doi.org/10.5732/cjc.014.10122] [PMID: 25189716]
[http://dx.doi.org/10.5732/cjc.014.10122] [PMID: 25189716]
[20]
Hanaizi, Z.; van Zwieten-Boot, B.; Calvo, G.; Lopez, A.S.; van Dartel, M.; Camarero, J.; Abadie, E.; Pignatti, F. The European Medicines Agency review of ipilimumab (Yervoy) for the treatment of advanced (unresectable or metastatic) melanoma in adults who have received prior therapy: summary of the scientific assessment of the Committee for Medicinal Products for Human Use. Eur. J. Cancer, 2012, 48(2), 237-242.
[http://dx.doi.org/10.1016/j.ejca.2011.09.018] [PMID: 22030452]
[http://dx.doi.org/10.1016/j.ejca.2011.09.018] [PMID: 22030452]
[21]
Dariavach, P.; Mattéi, M.G.; Golstein, P.; Lefranc, M.P. Human Ig superfamily CTLA-4 gene: chromosomal localization and identity of protein sequence between murine and human CTLA-4 cytoplasmic domains. Eur. J. Immunol., 1988, 18(12), 1901-1905.
[http://dx.doi.org/10.1002/eji.1830181206] [PMID: 3220103]
[http://dx.doi.org/10.1002/eji.1830181206] [PMID: 3220103]
[22]
Walunas, T.L.; Lenschow, D.J.; Bakker, C.Y.; Linsley, P.S.; Freeman, G.J.; Green, J.M.; Thompson, C.B.; Bluestone, J.A. CTLA-4 can function as a negative regulator of T cell activation. Immunity, 1994, 1(5), 405-413.
[http://dx.doi.org/10.1016/1074-7613(94)90071-X] [PMID: 7882171]
[http://dx.doi.org/10.1016/1074-7613(94)90071-X] [PMID: 7882171]
[23]
Krummel, M.F.; Allison, J.P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med., 1995, 182(2), 459-465.
[http://dx.doi.org/10.1084/jem.182.2.459] [PMID: 7543139]
[http://dx.doi.org/10.1084/jem.182.2.459] [PMID: 7543139]
[24]
Linsley, P.S.; Greene, J.L.; Tan, P.; Bradshaw, J.; Ledbetter, J.A.; Anasetti, C.; Damle, N.K. Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes. J. Exp. Med., 1992, 176(6), 1595-1604.
[http://dx.doi.org/10.1084/jem.176.6.1595] [PMID: 1334116]
[http://dx.doi.org/10.1084/jem.176.6.1595] [PMID: 1334116]
[25]
Kearney, E.R.; Walunas, T.L.; Karr, R.W.; Morton, P.A.; Loh, D.Y.; Bluestone, J.A.; Jenkins, M.K. Antigen-dependent clonal expansion of a trace population of antigen-specific CD4+ T cells in vivo is dependent on CD28 costimulation and inhibited by CTLA-4. J. Immunol., 1995, 155(3), 1032-1036.
[PMID: 7543510]
[PMID: 7543510]
[26]
Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; Akerley, W.; van den Eertwegh, A.J.; Lutzky, J.; Lorigan, P.; Vaubel, J.M.; Linette, G.P.; Hogg, D.; Ottensmeier, C.H.; Lebbé, C.; Peschel, C.; Quirt, I.; Clark, J.I.; Wolchok, J.D.; Weber, J.S.; Tian, J.; Yellin, M.J.; Nichol, G.M.; Hoos, A.; Urba, W.J. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med., 2010, 363(8), 711-723.
[http://dx.doi.org/10.1056/NEJMoa1003466] [PMID: 20525992]
[http://dx.doi.org/10.1056/NEJMoa1003466] [PMID: 20525992]
[27]
Jemal, A.; Siegel, R.; Xu, J.; Ward, E. Cancer statistics, 2010. CA Cancer J. Clin., 2010, 60(5), 277-300.
[http://dx.doi.org/10.3322/caac.20073] [PMID: 20610543]
[http://dx.doi.org/10.3322/caac.20073] [PMID: 20610543]
[28]
Lenschow, D.J.; Walunas, T.L.; Bluestone, J.A. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol., 1996, 14, 233-258.
[http://dx.doi.org/10.1146/annurev.immunol.14.1.233] [PMID: 8717514]
[http://dx.doi.org/10.1146/annurev.immunol.14.1.233] [PMID: 8717514]
[29]
Harris, N.L.; Ronchese, F. The role of B7 costimulation in T-cell immunity. Immunol. Cell Biol., 1999, 77(4), 304-311.
[http://dx.doi.org/10.1046/j.1440-1711.1999.00835.x] [PMID: 10457196]
[http://dx.doi.org/10.1046/j.1440-1711.1999.00835.x] [PMID: 10457196]
[30]
Riley, J.L.; Mao, M.; Kobayashi, S.; Biery, M.; Burchard, J.; Cavet, G.; Gregson, B.P.; June, C.H.; Linsley, P.S. Modulation of TCR-induced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 receptors. Proc. Natl. Acad. Sci. USA, 2002, 99(18), 11790-11795.
[http://dx.doi.org/10.1073/pnas.162359999] [PMID: 12195015]
[http://dx.doi.org/10.1073/pnas.162359999] [PMID: 12195015]
[31]
Schneider, H.; Downey, J.; Smith, A.; Zinselmeyer, B.H.; Rush, C.; Brewer, J.M.; Wei, B.; Hogg, N.; Garside, P.; Rudd, C.E. Reversal of the TCR stop signal by CTLA-4. Science, 2006, 313(5795), 1972-1975.
[http://dx.doi.org/10.1126/science.1131078] [PMID: 16931720]
[http://dx.doi.org/10.1126/science.1131078] [PMID: 16931720]
[32]
Egen, J.G.; Allison, J.P. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity, 2002, 16(1), 23-35.
[http://dx.doi.org/10.1016/S1074-7613(01)00259-X] [PMID: 11825563]
[http://dx.doi.org/10.1016/S1074-7613(01)00259-X] [PMID: 11825563]
[33]
Parry, R.V.; Chemnitz, J.M.; Frauwirth, K.A.; Lanfranco, A.R.; Braunstein, I.; Kobayashi, S.V.; Linsley, P.S.; Thompson, C.B.; Riley, J.L. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol., 2005, 25(21), 9543-9553.
[http://dx.doi.org/10.1128/MCB.25.21.9543-9553.2005] [PMID: 16227604]
[http://dx.doi.org/10.1128/MCB.25.21.9543-9553.2005] [PMID: 16227604]
[34]
Schneider, H.; Mandelbrot, D.A.; Greenwald, R.J.; Ng, F.; Lechler, R.; Sharpe, A.H.; Rudd, C.E. Cutting edge: CTLA-4 (CD152) differentially regulates mitogen-activated protein kinases (extracellular signal-regulated kinase and c-Jun N-terminal kinase) in CD4+ T cells from receptor/ligand-deficient mice. J. Immunol., 2002, 169(7), 3475-3479.
[http://dx.doi.org/10.4049/jimmunol.169.7.3475] [PMID: 12244135]
[http://dx.doi.org/10.4049/jimmunol.169.7.3475] [PMID: 12244135]
[35]
Linsley, P.S.; Greene, J.L.; Brady, W.; Bajorath, J.; Ledbetter, J.A.; Peach, R. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity, 1994, 1(9), 793-801.
[http://dx.doi.org/10.1016/S1074-7613(94)80021-9] [PMID: 7534620]
[http://dx.doi.org/10.1016/S1074-7613(94)80021-9] [PMID: 7534620]
[36]
Sansom, D.M. CD28, CTLA-4 and their ligands: who does what and to whom? Immunology, 2000, 101(2), 169-177.
[http://dx.doi.org/10.1046/j.1365-2567.2000.00121.x] [PMID: 11012769]
[http://dx.doi.org/10.1046/j.1365-2567.2000.00121.x] [PMID: 11012769]
[37]
Phan, G.Q.; Yang, J.C.; Sherry, R.M.; Hwu, P.; Topalian, S.L.; Schwartzentruber, D.J.; Restifo, N.P.; Haworth, L.R.; Seipp, C.A.; Freezer, L.J.; Morton, K.E.; Mavroukakis, S.A.; Duray, P.H.; Steinberg, S.M.; Allison, J.P.; Davis, T.A.; Rosenberg, S.A. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl. Acad. Sci. USA, 2003, 100(14), 8372-8377.
[http://dx.doi.org/10.1073/pnas.1533209100] [PMID: 12826605]
[http://dx.doi.org/10.1073/pnas.1533209100] [PMID: 12826605]
[38]
Tivol, E.A.; Borriello, F.; Schweitzer, A.N.; Lynch, W.P.; Bluestone, J.A.; Sharpe, A.H. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity, 1995, 3(5), 541-547.
[http://dx.doi.org/10.1016/1074-7613(95)90125-6] [PMID: 7584144]
[http://dx.doi.org/10.1016/1074-7613(95)90125-6] [PMID: 7584144]
[39]
Waterhouse, P.; Penninger, J.M.; Timms, E.; Wakeham, A.; Shahinian, A.; Lee, K.P.; Thompson, C.B.; Griesser, H.; Mak, T.W. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science, 1995, 270(5238), 985-988.
[http://dx.doi.org/10.1126/science.270.5238.985] [PMID: 7481803]
[http://dx.doi.org/10.1126/science.270.5238.985] [PMID: 7481803]
[41]
Hoos, A. Development of immuno-oncology drugs - from CTLA4 to PD1 to the next generations. Nat. Rev. Drug Discov., 2016, 15(4), 235-247.
[http://dx.doi.org/10.1038/nrd.2015.35] [PMID: 26965203]
[http://dx.doi.org/10.1038/nrd.2015.35] [PMID: 26965203]
[42]
Zou, W.; Wolchok, J.D.; Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci. Transl. Med., 2016, 8(328), 328rv4.
[http://dx.doi.org/10.1126/scitranslmed.aad7118] [PMID: 26936508]
[http://dx.doi.org/10.1126/scitranslmed.aad7118] [PMID: 26936508]
[43]
Agata, Y.; Kawasaki, A.; Nishimura, H.; Ishida, Y.; Tsubata, T.; Yagita, H.; Honjo, T. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int. Immunol., 1996, 8(5), 765-772.
[http://dx.doi.org/10.1093/intimm/8.5.765] [PMID: 8671665]
[http://dx.doi.org/10.1093/intimm/8.5.765] [PMID: 8671665]
[44]
Albiges, L.; Fay, A.P.; Xie, W.; Krajewski, K.; McDermott, D.F.; Heng, D.Y.; Dariane, C.; DeVelasco, G.; Lester, R.; Escudier, B.; Choueiri, T.K. Efficacy of targeted therapies after PD-1/PD-L1 blockade in metastatic renal cell carcinoma. Eur. J. Cancer, 2015, 51(17), 2580-2586.
[http://dx.doi.org/10.1016/j.ejca.2015.08.017] [PMID: 26346135]
[http://dx.doi.org/10.1016/j.ejca.2015.08.017] [PMID: 26346135]
[45]
Hematology/Oncology (Cancer) Approvals & Safety Notifications; FDA Web site, 2015.Available at. https://www.fda.gov/drugs/resources-information-approved-drugs/hematologyoncology-cancer-approvals-safety-notifications [Updated April 24].
[46]
Kazandjian, D.; Suzman, D.L.; Blumenthal, G.; Mushti, S.; He, K.; Libeg, M.; Keegan, P.; Pazdur, R. FDA approval summary: nivolumab for the treatment of metastatic non-small cell lung cancer with progression on or after platinum-based chemotherapy. Oncologist, 2016, 21(5), 634-642.
[http://dx.doi.org/10.1634/theoncologist.2015-0507] [PMID: 26984449]
[http://dx.doi.org/10.1634/theoncologist.2015-0507] [PMID: 26984449]
[47]
Torre, L.A.; Siegel, R.L.; Jemal, A. Lung cancer statistics. Adv. Exp. Med. Biol., 2016, 893, 1-19.
[http://dx.doi.org/10.1007/978-3-319-24223-1_1] [PMID: 26667336]
[http://dx.doi.org/10.1007/978-3-319-24223-1_1] [PMID: 26667336]
[48]
Gandini, S.; Massi, D.; Mandalà, M. PD-L1 expression in cancer patients receiving anti PD-1/PD-L1 antibodies: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol., 2016, 100, 88-98.
[http://dx.doi.org/10.1016/j.critrevonc.2016.02.001] [PMID: 26895815]
[http://dx.doi.org/10.1016/j.critrevonc.2016.02.001] [PMID: 26895815]
[49]
Ishida, Y.; Agata, Y.; Shibahara, K.; Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J., 1992, 11(11), 3887-3895.
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05481.x] [PMID: 1396582]
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05481.x] [PMID: 1396582]
[50]
Dong, H.; Zhu, G.; Tamada, K.; Flies, D.B.; van Deursen, J.M.; Chen, L. B7-H1 determines accumulation and deletion of intrahepatic CD8(+) T lymphocytes. Immunity, 2004, 20(3), 327-336.
[http://dx.doi.org/10.1016/S1074-7613(04)00050-0] [PMID: 15030776]
[http://dx.doi.org/10.1016/S1074-7613(04)00050-0] [PMID: 15030776]
[51]
Gros, A.; Robbins, P.F.; Yao, X.; Li, Y.F.; Turcotte, S.; Tran, E.; Wunderlich, J.R.; Mixon, A.; Farid, S.; Dudley, M.E.; Hanada, K.; Almeida, J.R.; Darko, S.; Douek, D.C.; Yang, J.C.; Rosenberg, S.A. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J. Clin. Invest., 2014, 124(5), 2246-2259.
[http://dx.doi.org/10.1172/JCI73639] [PMID: 24667641]
[http://dx.doi.org/10.1172/JCI73639] [PMID: 24667641]
[52]
Thibult, M.L.; Mamessier, E.; Gertner-Dardenne, J.; Pastor, S.; Just-Landi, S.; Xerri, L.; Chetaille, B.; Olive, D. PD-1 is a novel regulator of human B-cell activation. Int. Immunol., 2013, 25(2), 129-137.
[http://dx.doi.org/10.1093/intimm/dxs098] [PMID: 23087177]
[http://dx.doi.org/10.1093/intimm/dxs098] [PMID: 23087177]
[53]
Norris, S.; Coleman, A.; Kuri-Cervantes, L.; Bower, M.; Nelson, M.; Goodier, M.R. PD-1 expression on natural killer cells and CD8(+) T cells during chronic HIV-1 infection. Viral Immunol., 2012, 25(4), 329-332.
[http://dx.doi.org/10.1089/vim.2011.0096] [PMID: 22742708]
[http://dx.doi.org/10.1089/vim.2011.0096] [PMID: 22742708]
[54]
Lim, T.S.; Chew, V.; Sieow, J.L.; Goh, S.; Yeong, J.P.; Soon, A.L.; Ricciardi-Castagnoli, P. PD-1 expression on dendritic cells suppresses CD8+ T cell function and antitumor immunity. OncoImmunology, 2015, 5(3), e1085146.
[http://dx.doi.org/10.1080/2162402X.2015.1085146] [PMID: 27141339]
[http://dx.doi.org/10.1080/2162402X.2015.1085146] [PMID: 27141339]
[55]
Dong, H.; Zhu, G.; Tamada, K.; Chen, L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med., 1999, 5(12), 1365-1369.
[http://dx.doi.org/10.1038/70932] [PMID: 10581077]
[http://dx.doi.org/10.1038/70932] [PMID: 10581077]
[56]
Nishimura, H.; Minato, N.; Nakano, T.; Honjo, T. Immunological studies on PD-1 deficient mice: implication of PD-1 as a negative regulator for B cell responses. Int. Immunol., 1998, 10(10), 1563-1572.
[http://dx.doi.org/10.1093/intimm/10.10.1563] [PMID: 9796923]
[http://dx.doi.org/10.1093/intimm/10.10.1563] [PMID: 9796923]
[57]
Latchman, Y.E.; Liang, S.C.; Wu, Y.; Chernova, T.; Sobel, R.A.; Klemm, M.; Kuchroo, V.K.; Freeman, G.J.; Sharpe, A.H. PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc. Natl. Acad. Sci. USA, 2004, 101(29), 10691-10696.
[http://dx.doi.org/10.1073/pnas.0307252101] [PMID: 15249675]
[http://dx.doi.org/10.1073/pnas.0307252101] [PMID: 15249675]
[58]
Freeman, G.J.; Long, A.J.; Iwai, Y.; Bourque, K.; Chernova, T.; Nishimura, H.; Fitz, L.J.; Malenkovich, N.; Okazaki, T.; Byrne, M.C.; Horton, H.F.; Fouser, L.; Carter, L.; Ling, V.; Bowman, M.R.; Carreno, B.M.; Collins, M.; Wood, C.R.; Honjo, T. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med., 2000, 192(7), 1027-1034.
[http://dx.doi.org/10.1084/jem.192.7.1027] [PMID: 11015443]
[http://dx.doi.org/10.1084/jem.192.7.1027] [PMID: 11015443]
[59]
Zou, W.; Chen, L. Inhibitory B7-family molecules in the tumour microenvironment. Nat. Rev. Immunol., 2008, 8(6), 467-477.
[http://dx.doi.org/10.1038/nri2326] [PMID: 18500231]
[http://dx.doi.org/10.1038/nri2326] [PMID: 18500231]
[60]
Butte, M.J.; Keir, M.E.; Phamduy, T.B.; Sharpe, A.H.; Freeman, G.J. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity, 2007, 27(1), 111-122.
[http://dx.doi.org/10.1016/j.immuni.2007.05.016] [PMID: 17629517]
[http://dx.doi.org/10.1016/j.immuni.2007.05.016] [PMID: 17629517]
[61]
Korman, A.J.; Peggs, K.S.; Allison, J.P. Checkpoint blockade in cancer immunotherapy. Adv. Immunol., 2006, 90, 297-339.
[http://dx.doi.org/10.1016/S0065-2776(06)90008-X] [PMID: 16730267]
[http://dx.doi.org/10.1016/S0065-2776(06)90008-X] [PMID: 16730267]
[62]
Dong, H.; Strome, S.E.; Matteson, E.L.; Moder, K.G.; Flies, D.B.; Zhu, G.; Tamura, H.; Driscoll, C.L.; Chen, L. Costimulating aberrant T cell responses by B7-H1 autoantibodies in rheumatoid arthritis. J. Clin. Invest., 2003, 111(3), 363-370.
[http://dx.doi.org/10.1172/JCI16015] [PMID: 12569162]
[http://dx.doi.org/10.1172/JCI16015] [PMID: 12569162]
[63]
Azuma, T.; Yao, S.; Zhu, G.; Flies, A.S.; Flies, S.J.; Chen, L. B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood, 2008, 111(7), 3635-3643.
[http://dx.doi.org/10.1182/blood-2007-11-123141] [PMID: 18223165]
[http://dx.doi.org/10.1182/blood-2007-11-123141] [PMID: 18223165]
[64]
Wang, S.; Bajorath, J.; Flies, D.B.; Dong, H.; Honjo, T.; Chen, L. Molecular modeling and functional mapping of B7-H1 and B7-DC uncouple costimulatory function from PD-1 interaction. J. Exp. Med., 2003, 197(9), 1083-1091.
[http://dx.doi.org/10.1084/jem.20021752] [PMID: 12719480]
[http://dx.doi.org/10.1084/jem.20021752] [PMID: 12719480]
[65]
Xiao, Y.; Yu, S.; Zhu, B.; Bedoret, D.; Bu, X.; Francisco, L.M.; Hua, P.; Duke-Cohan, J.S.; Umetsu, D.T.; Sharpe, A.H.; DeKruyff, R.H.; Freeman, G.J. RGMb is a novel binding partner for PD-L2 and its engagement with PD-L2 promotes respiratory tolerance. J. Exp. Med., 2014, 211(5), 943-959.
[http://dx.doi.org/10.1084/jem.20130790] [PMID: 24752301]
[http://dx.doi.org/10.1084/jem.20130790] [PMID: 24752301]
[66]
Robert, C.; Schachter, J.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M.; Larkin, J.; Lorigan, P.; Neyns, B.; Blank, C.U.; Hamid, O.; Mateus, C.; Shapira-Frommer, R.; Kosh, M.; Zhou, H.; Ibrahim, N.; Ebbinghaus, S.; Ribas, A. Pembrolizumab versus Ipilimumab in advanced melanoma. N. Engl. J. Med., 2015, 372(26), 2521-2532.
[http://dx.doi.org/10.1056/NEJMoa1503093] [PMID: 25891173]
[http://dx.doi.org/10.1056/NEJMoa1503093] [PMID: 25891173]
[67]
Redman, J.M.; Gibney, G.T.; Atkins, M.B. Advances in immunotherapy for melanoma. BMC Med., 2016, 14, 20.
[http://dx.doi.org/10.1186/s12916-016-0571-0] [PMID: 26850630]
[http://dx.doi.org/10.1186/s12916-016-0571-0] [PMID: 26850630]
[68]
Rosenberg, S.A. Decade in review-cancer immunotherapy: entering the mainstream of cancer treatment. Nat. Rev. Clin. Oncol., 2014, 11(11), 630-632.
[http://dx.doi.org/10.1038/nrclinonc.2014.174] [PMID: 25311350]
[http://dx.doi.org/10.1038/nrclinonc.2014.174] [PMID: 25311350]
[69]
Walker, L.S. Treg and CTLA-4: two intertwining pathways to immune tolerance. J. Autoimmun., 2013, 45, 49-57.
[http://dx.doi.org/10.1016/j.jaut.2013.06.006] [PMID: 23849743]
[http://dx.doi.org/10.1016/j.jaut.2013.06.006] [PMID: 23849743]
[70]
McCoy, K.D.; Le Gros, G. The role of CTLA-4 in the regulation of T cell immune responses. Immunol. Cell Biol., 1999, 77(1), 1-10.
[http://dx.doi.org/10.1046/j.1440-1711.1999.00795.x] [PMID: 10101680]
[http://dx.doi.org/10.1046/j.1440-1711.1999.00795.x] [PMID: 10101680]
[71]
Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer, 2005, 5(4), 263-274.
[http://dx.doi.org/10.1038/nrc1586] [PMID: 15776005]
[http://dx.doi.org/10.1038/nrc1586] [PMID: 15776005]
[72]
Naidoo, J.; Page, D.B.; Li, B.T.; Connell, L.C.; Schindler, K.; Lacouture, M.E.; Postow, M.A.; Wolchok, J.D. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann. Oncol., 2015, 26(12), 2375-2391.
[PMID: 26371282]
[PMID: 26371282]
[73]
Weber, J.S.; Dummer, R.; de Pril, V.; Lebbé, C.; Hodi, F.S.; Investigators, M.D.X. Patterns of onset and resolution of immune-related adverse events of special interest with ipilimumab: detailed safety analysis from a phase 3 trial in patients with advanced melanoma. Cancer, 2013, 119(9), 1675-1682.
[http://dx.doi.org/10.1002/cncr.27969] [PMID: 23400564]
[http://dx.doi.org/10.1002/cncr.27969] [PMID: 23400564]
[74]
Chow, L.Q. Exploring novel immune-related toxicities and endpoints with immune-checkpoint inhibitors in non-small cell lung cancer. Am. Soc. Clin. Oncol. Educ. Book, 2013.
[http://dx.doi.org/10.1200/EdBook_AM.2013.33.e280] [PMID: 23714523]
[http://dx.doi.org/10.1200/EdBook_AM.2013.33.e280] [PMID: 23714523]
[75]
Callahan, M.K.; Postow, M.A.; Wolchok, J.D. CTLA-4 and PD-1 pathway blockade: combinations in the clinic. Front. Oncol., 2015, 4, 385.
[http://dx.doi.org/10.3389/fonc.2014.00385] [PMID: 25642417]
[http://dx.doi.org/10.3389/fonc.2014.00385] [PMID: 25642417]
[76]
Watson, H.A.; Wehenkel, S.; Matthews, J.; Ager, A. SHP-1: the next checkpoint target for cancer immunotherapy? Biochem. Soc. Trans., 2016, 44(2), 356-362.
[http://dx.doi.org/10.1042/BST20150251] [PMID: 27068940]
[http://dx.doi.org/10.1042/BST20150251] [PMID: 27068940]
[77]
Sheppard, K.A.; Fitz, L.J.; Lee, J.M.; Benander, C.; George, J.A.; Wooters, J.; Qiu, Y.; Jussif, J.M.; Carter, L.L.; Wood, C.R.; Chaudhary, D. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett., 2004, 574(1-3), 37-41.
[http://dx.doi.org/10.1016/j.febslet.2004.07.083] [PMID: 15358536]
[http://dx.doi.org/10.1016/j.febslet.2004.07.083] [PMID: 15358536]
[78]
Chemnitz, J.M.; Parry, R.V.; Nichols, K.E.; June, C.H.; Riley, J.L. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J. Immunol., 2004, 173(2), 945-954.
[http://dx.doi.org/10.4049/jimmunol.173.2.945] [PMID: 15240681]
[http://dx.doi.org/10.4049/jimmunol.173.2.945] [PMID: 15240681]
[79]
Yi, T.; Pathak, M.K.; Lindner, D.J.; Ketterer, M.E.; Farver, C.; Borden, E.C. Anticancer activity of sodium stibogluconate in synergy with IFNs. J. Immunol., 2002, 169(10), 5978-5985.
[http://dx.doi.org/10.4049/jimmunol.169.10.5978] [PMID: 12421984]
[http://dx.doi.org/10.4049/jimmunol.169.10.5978] [PMID: 12421984]
[80]
Kundu, S.; Fan, K.; Cao, M.; Lindner, D.J.; Zhao, Z.J.; Borden, E.; Yi, T. Novel SHP-1 inhibitors tyrosine phosphatase inhibitor-1 and analogs with preclinical anti-tumor activities as tolerated oral agents. J. Immunol., 2010, 184(11), 6529-6536.
[http://dx.doi.org/10.4049/jimmunol.0903562] [PMID: 20421638]
[http://dx.doi.org/10.4049/jimmunol.0903562] [PMID: 20421638]
[81]
Chen, L.; Sung, S.S.; Yip, M.L.; Lawrence, H.R.; Ren, Y.; Guida, W.C.; Sebti, S.M.; Lawrence, N.J.; Wu, J. Discovery of a novel shp2 protein tyrosine phosphatase inhibitor. Mol. Pharmacol., 2006, 70(2), 562-570.
[http://dx.doi.org/10.1124/mol.106.025536] [PMID: 16717135]
[http://dx.doi.org/10.1124/mol.106.025536] [PMID: 16717135]
[82]
Naing, A.; Reuben, J.M.; Camacho, L.H.; Gao, H.; Lee, B.N.; Cohen, E.N.; Verschraegen, C.; Stephen, S.; Aaron, J.; Hong, D.; Wheler, J.; Kurzrock, R.; Phase, I.; Phase, I. Dose escalation study of sodium stibogluconate (SSG), a protein tyrosine phosphatase inhibitor, combined with interferon alpha for patients with solid tumors. J. Cancer, 2011, 2, 81-89.
[http://dx.doi.org/10.7150/jca.2.81] [PMID: 21326629]
[http://dx.doi.org/10.7150/jca.2.81] [PMID: 21326629]
[83]
Sun, T.W.; Gao, Q.; Qiu, S.J.; Zhou, J.; Wang, X.Y.; Yi, Y.; Shi, J.Y.; Xu, Y.F.; Shi, Y.H.; Song, K.; Xiao, Y.S.; Fan, J. B7-H3 is expressed in human hepatocellular carcinoma and is associated with tumor aggressiveness and postoperative recurrence. Cancer Immunol. Immunother., 2012, 61(11), 2171-2182.
[http://dx.doi.org/10.1007/s00262-012-1278-5] [PMID: 22729558]
[http://dx.doi.org/10.1007/s00262-012-1278-5] [PMID: 22729558]
[84]
Yamato, I.; Sho, M.; Nomi, T.; Akahori, T.; Shimada, K.; Hotta, K.; Kanehiro, H.; Konishi, N.; Yagita, H.; Nakajima, Y. Clinical importance of B7-H3 expression in human pancreatic cancer. Br. J. Cancer, 2009, 101(10), 1709-1716.
[http://dx.doi.org/10.1038/sj.bjc.6605375] [PMID: 19844235]
[http://dx.doi.org/10.1038/sj.bjc.6605375] [PMID: 19844235]
[85]
Nagase-Zembutsu, A.; Hirotani, K.; Yamato, M.; Yamaguchi, J.; Takata, T.; Yoshida, M.; Fukuchi, K.; Yazawa, M.; Takahashi, S.; Agatsuma, T. Development of DS-5573a: A novel afucosylated mAb directed at B7-H3 with potent antitumor activity. Cancer Sci., 2016, 107(5), 674-681.
[http://dx.doi.org/10.1111/cas.12915] [PMID: 26914241]
[http://dx.doi.org/10.1111/cas.12915] [PMID: 26914241]
[86]
Kramer, K.; Kushner, B.H.; Modak, S.; Pandit-Taskar, N.; Smith-Jones, P.; Zanzonico, P.; Humm, J.L.; Xu, H.; Wolden, S.L.; Souweidane, M.M.; Larson, S.M.; Cheung, N.K. Compartmental intrathecal radioimmunotherapy: results for treatment for metastatic CNS neuroblastoma. J. Neurooncol., 2010, 97(3), 409-418.
[http://dx.doi.org/10.1007/s11060-009-0038-7] [PMID: 19890606]
[http://dx.doi.org/10.1007/s11060-009-0038-7] [PMID: 19890606]
[87]
Leone, R.D.; Lo, Y.C.; Powell, J.D. A2aR antagonists: Next generation checkpoint blockade for cancer immunotherapy. Comput. Struct. Biotechnol. J., 2015, 13, 265-272.
[http://dx.doi.org/10.1016/j.csbj.2015.03.008] [PMID: 25941561]
[http://dx.doi.org/10.1016/j.csbj.2015.03.008] [PMID: 25941561]
[88]
Buchan, S.; Manzo, T.; Flutter, B.; Rogel, A.; Edwards, N.; Zhang, L.; Sivakumaran, S.; Ghorashian, S.; Carpenter, B.; Bennett, C.; Freeman, G.J.; Sykes, M.; Croft, M.; Al-Shamkhani, A.; Chakraverty, R. OX40- and CD27-mediated costimulation synergizes with anti-PD-L1 blockade by forcing exhausted CD8+ T cells to exit quiescence. J. Immunol., 2015, 194(1), 125-133.
[http://dx.doi.org/10.4049/jimmunol.1401644] [PMID: 25404365]
[http://dx.doi.org/10.4049/jimmunol.1401644] [PMID: 25404365]
[89]
Foy, S.P.; Sennino, B.; dela Cruz, T.; Cote, J.J.; Gordon, E.J.; Kemp, F.; Xavier, V.; Franzusoff, A.; Rountree, R.B.; Mandl, S.J. Poxvirus-based active immunotherapy with PD-1 and LAG-3 dual immune checkpoint inhibition overcomes compensatory immune regulation, yielding complete tumor regression in mice. PLoS One, 2016, 11(2), e0150084.
[http://dx.doi.org/10.1371/journal.pone.0150084] [PMID: 26910562]
[http://dx.doi.org/10.1371/journal.pone.0150084] [PMID: 26910562]
[90]
Ngiow, S.F.; Teng, M.W.; Smyth, M.J. Prospects for TIM3-targeted antitumor immunotherapy. Cancer Res., 2011, 71(21), 6567-6571.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1487] [PMID: 22009533]
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1487] [PMID: 22009533]
[91]
NCT02413827. Available at. ClinicalTrials.gov, a service
of the U.S. National Institutes of Health, 2016. [Updated
2016 July].
[92]
David, L.; Bajor, R.M.; Matthew, J. Riese; Lee, P. Richman;
Xiaowei, Xu; Drew, A. Torigian; Erietta, Stelekati;
Martha, Sweeney; Brendan, Sullivan; Lynn, M. Schuchter;
Ravi, Amaravadi; E. John, Wherry; Robert, H. Vonderheide
Combination of agonistic CD40 monoclonal antibody CP-
870,893 and anti-CTLA-4 antibody tremelimumab in patients
with metastatic melanoma. American Association for
Cancer Research Annual Meeting, 2015.
[93]
Eliopoulos, A.G.; Young, L.S. The role of the CD40 pathway in the pathogenesis and treatment of cancer. Curr. Opin. Pharmacol., 2004, 4(4), 360-367.
[http://dx.doi.org/10.1016/j.coph.2004.02.008] [PMID: 15251129]
[http://dx.doi.org/10.1016/j.coph.2004.02.008] [PMID: 15251129]
[94]
van Kooten, C.; Banchereau, J. CD40-CD40 ligand. J. Leukoc. Biol., 2000, 67(1), 2-17.
[http://dx.doi.org/10.1002/jlb.67.1.2] [PMID: 10647992]
[http://dx.doi.org/10.1002/jlb.67.1.2] [PMID: 10647992]
[95]
Johnson, P.; Challis, R.; Chowdhury, F.; Gao, Y.; Harvey, M.; Geldart, T.; Kerr, P.; Chan, C.; Smith, A.; Steven, N.; Edwards, C.; Ashton-Key, M.; Hodges, E.; Tutt, A.; Ottensmeier, C.; Glennie, M.; Williams, A. Clinical and biological effects of an agonist anti-CD40 antibody: a Cancer Research UK phase I study. Clin. Cancer Res., 2015, 21(6), 1321-1328.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2355] [PMID: 25589626]
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2355] [PMID: 25589626]
[96]
Vonderheide, R.H.; Flaherty, K.T.; Khalil, M.; Stumacher, M.S.; Bajor, D.L.; Hutnick, N.A.; Sullivan, P.; Mahany, J.J.; Gallagher, M.; Kramer, A.; Green, S.J.; O’Dwyer, P.J.; Running, K.L.; Huhn, R.D.; Antonia, S.J. Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J. Clin. Oncol., 2007, 25(7), 876-883.
[http://dx.doi.org/10.1200/JCO.2006.08.3311] [PMID: 17327609]
[http://dx.doi.org/10.1200/JCO.2006.08.3311] [PMID: 17327609]
[97]
Lutz-Nicoladoni, C.; Wolf, D.; Sopper, S. Modulation of immune cell functions by the E3 ligase Cbl-b. Front. Oncol., 2015, 5, 58.
[http://dx.doi.org/10.3389/fonc.2015.00058] [PMID: 25815272]
[http://dx.doi.org/10.3389/fonc.2015.00058] [PMID: 25815272]
[98]
Paolino, M.; Choidas, A.; Wallner, S.; Pranjic, B.; Uribesalgo, I.; Loeser, S.; Jamieson, A.M.; Langdon, W.Y.; Ikeda, F.; Fededa, J.P.; Cronin, S.J.; Nitsch, R.; Schultz-Fademrecht, C.; Eickhoff, J.; Menninger, S.; Unger, A.; Torka, R.; Gruber, T.; Hinterleitner, R.; Baier, G.; Wolf, D.; Ullrich, A.; Klebl, B.M.; Penninger, J.M. The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells. Nature, 2014, 507(7493), 508-512.
[http://dx.doi.org/10.1038/nature12998] [PMID: 24553136]
[http://dx.doi.org/10.1038/nature12998] [PMID: 24553136]
[99]
Ebert, P.J.R.; Cheung, J.; Yang, Y.; McNamara, E.; Hong, R.; Moskalenko, M.; Gould, S.E.; Maecker, H.; Irving, B.A.; Kim, J.M.; Belvin, M.; Mellman, I. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity, 2016, 44(3), 609-621.
[http://dx.doi.org/10.1016/j.immuni.2016.01.024] [PMID: 26944201]
[http://dx.doi.org/10.1016/j.immuni.2016.01.024] [PMID: 26944201]
[100]
Paccez, J.D.; Vogelsang, M.; Parker, M.I.; Zerbini, L.F. The receptor tyrosine kinase Axl in cancer: biological functions and therapeutic implications. Int. J. Cancer, 2014, 134(5), 1024-1033.
[http://dx.doi.org/10.1002/ijc.28246] [PMID: 23649974]
[http://dx.doi.org/10.1002/ijc.28246] [PMID: 23649974]
[101]
Asiedu, M.K.; Beauchamp-Perez, F.D.; Ingle, J.N.; Behrens, M.D.; Radisky, D.C.; Knutson, K.L. AXL induces epithelial-to-mesenchymal transition and regulates the function of breast cancer stem cells. Oncogene, 2014, 33(10), 1316-1324.
[http://dx.doi.org/10.1038/onc.2013.57] [PMID: 23474758]
[http://dx.doi.org/10.1038/onc.2013.57] [PMID: 23474758]
[102]
Terry, S.; Chouaib, S. EMT in immuno-resistance. Oncoscience, 2015, 2(10), 841-842.
[PMID: 26682272]
[PMID: 26682272]
[103]
Gro Gausdal, K.D. Katarzyna, Wnuk-Lipinska; Kathleen, Wiertel; Monica, Hellesøy; Magnus, Blø; Lavina, Ahmed; Linn, Hodneland; Sergej, Kiprijanov; Rolf, A Brekken; James, B Lorens BGB324, a selective small molecule inhibitor of the receptor tyrosine kinase AXL, enhances immune checkpoint inhibitor efficacy. Proceedings of the CRI-CIMT-EATI-AACR Inaugural International Cancer Immunotherapy Conference: Translating Science into Survival, 2016.
[104]
Cicenas, J.; Kalyan, K.; Sorokinas, A.; Jatulyte, A.; Valiunas, D.; Kaupinis, A.; Valius, M. Highlights of the latest advances in research on CDK inhibitors. Cancers (Basel), 2014, 6(4), 2224-2242.
[http://dx.doi.org/10.3390/cancers6042224] [PMID: 25349887]
[http://dx.doi.org/10.3390/cancers6042224] [PMID: 25349887]
[105]
Dorand, R.D.; Nthale, J.; Myers, J.T.; Barkauskas, D.S.; Avril, S.; Chirieleison, S.M.; Pareek, T.K.; Abbott, D.W.; Stearns, D.S.; Letterio, J.J.; Huang, A.Y.; Petrosiute, A. Cdk5 disruption attenuates tumor PD-L1 expression and promotes antitumor immunity. Science, 2016, 353(6297), 399-403.
[http://dx.doi.org/10.1126/science.aae0477] [PMID: 27463676]
[http://dx.doi.org/10.1126/science.aae0477] [PMID: 27463676]
[106]
Kelderman, S.; Schumacher, T.N.; Haanen, J.B. Acquired and intrinsic resistance in cancer immunotherapy. Mol. Oncol., 2014, 8(6), 1132-1139.
[http://dx.doi.org/10.1016/j.molonc.2014.07.011] [PMID: 25106088]
[http://dx.doi.org/10.1016/j.molonc.2014.07.011] [PMID: 25106088]
[107]
Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; Ferrucci, P.F.; Hill, A.; Wagstaff, J.; Carlino, M.S.; Haanen, J.B.; Maio, M.; Marquez-Rodas, I.; McArthur, G.A.; Ascierto, P.A.; Long, G.V.; Callahan, M.K.; Postow, M.A.; Grossmann, K.; Sznol, M.; Dreno, B.; Bastholt, L.; Yang, A.; Rollin, L.M.; Horak, C.; Hodi, F.S.; Wolchok, J.D. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med., 2015, 373(1), 23-34.
[http://dx.doi.org/10.1056/NEJMoa1504030] [PMID: 26027431]
[http://dx.doi.org/10.1056/NEJMoa1504030] [PMID: 26027431]
[108]
Robert, C.; Long, G.V.; Brady, B.; Dutriaux, C.; Maio, M.; Mortier, L.; Hassel, J.C.; Rutkowski, P.; McNeil, C.; Kalinka-Warzocha, E.; Savage, K.J.; Hernberg, M.M.; Lebbé, C.; Charles, J.; Mihalcioiu, C.; Chiarion-Sileni, V.; Mauch, C.; Cognetti, F.; Arance, A.; Schmidt, H.; Schadendorf, D.; Gogas, H.; Lundgren-Eriksson, L.; Horak, C.; Sharkey, B.; Waxman, I.M.; Atkinson, V.; Ascierto, P.A. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med., 2015, 372(4), 320-330.
[http://dx.doi.org/10.1056/NEJMoa1412082] [PMID: 25399552]
[http://dx.doi.org/10.1056/NEJMoa1412082] [PMID: 25399552]
[109]
Restifo, N.P.; Smyth, M.J.; Snyder, A. Acquired resistance to immunotherapy and future challenges. Nat. Rev. Cancer, 2016, 16(2), 121-126.
[http://dx.doi.org/10.1038/nrc.2016.2] [PMID: 26822578]
[http://dx.doi.org/10.1038/nrc.2016.2] [PMID: 26822578]
[110]
Dai, B.; Xiao, L.; Bryson, P.D.; Fang, J.; Wang, P. PD-1/PD-L1 blockade can enhance HIV-1 Gag-specific T cell immunity elicited by dendritic cell-directed lentiviral vaccines. Mol. Ther., 2012, 20(9), 1800-1809.
[http://dx.doi.org/10.1038/mt.2012.98] [PMID: 22588271]
[http://dx.doi.org/10.1038/mt.2012.98] [PMID: 22588271]
[111]
Day, C.L.; Kaufmann, D.E.; Kiepiela, P.; Brown, J.A.; Moodley, E.S.; Reddy, S.; Mackey, E.W.; Miller, J.D.; Leslie, A.J.; DePierres, C.; Mncube, Z.; Duraiswamy, J.; Zhu, B.; Eichbaum, Q.; Altfeld, M.; Wherry, E.J.; Coovadia, H.M.; Goulder, P.J.; Klenerman, P.; Ahmed, R.; Freeman, G.J.; Walker, B.D. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature, 2006, 443(7109), 350-354.
[http://dx.doi.org/10.1038/nature05115] [PMID: 16921384]
[http://dx.doi.org/10.1038/nature05115] [PMID: 16921384]
[112]
Van Allen, E.M.; Miao, D.; Schilling, B.; Shukla, S.A.; Blank, C.; Zimmer, L.; Sucker, A.; Hillen, U.; Foppen, M.H.G.; Goldinger, S.M.; Utikal, J.; Hassel, J.C.; Weide, B.; Kaehler, K.C.; Loquai, C.; Mohr, P.; Gutzmer, R.; Dummer, R.; Gabriel, S.; Wu, C.J.; Schadendorf, D.; Garraway, L.A. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science, 2015, 350(6257), 207-211.
[http://dx.doi.org/10.1126/science.aad0095] [PMID: 26359337]
[http://dx.doi.org/10.1126/science.aad0095] [PMID: 26359337]
[113]
Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; Biedrzycki, B.; Donehower, R.C.; Zaheer, A.; Fisher, G.A.; Crocenzi, T.S.; Lee, J.J.; Duffy, S.M.; Goldberg, R.M.; de la Chapelle, A.; Koshiji, M.; Bhaijee, F.; Huebner, T.; Hruban, R.H.; Wood, L.D.; Cuka, N.; Pardoll, D.M.; Papadopoulos, N.; Kinzler, K.W.; Zhou, S.; Cornish, T.C.; Taube, J.M.; Anders, R.A.; Eshleman, J.R.; Vogelstein, B.; Diaz, L.A., Jr PD-1 Blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med., 2015, 372(26), 2509-2520.
[http://dx.doi.org/10.1056/NEJMoa1500596] [PMID: 26028255]
[http://dx.doi.org/10.1056/NEJMoa1500596] [PMID: 26028255]
[114]
Restifo, N.P.; Marincola, F.M.; Kawakami, Y.; Taubenberger, J.; Yannelli, J.R.; Rosenberg, S.A. Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J. Natl. Cancer Inst., 1996, 88(2), 100-108.
[http://dx.doi.org/10.1093/jnci/88.2.100] [PMID: 8537970]
[http://dx.doi.org/10.1093/jnci/88.2.100] [PMID: 8537970]
[115]
Koyama, S.; Akbay, E.A.; Li, Y.Y.; Herter-Sprie, G.S.; Buczkowski, K.A.; Richards, W.G.; Gandhi, L.; Redig, A.J.; Rodig, S.J.; Asahina, H.; Jones, R.E.; Kulkarni, M.M.; Kuraguchi, M.; Palakurthi, S.; Fecci, P.E.; Johnson, B.E.; Janne, P.A.; Engelman, J.A.; Gangadharan, S.P.; Costa, D.B.; Freeman, G.J.; Bueno, R.; Hodi, F.S.; Dranoff, G.; Wong, K.K.; Hammerman, P.S. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun., 2016, 7, 10501.
[http://dx.doi.org/10.1038/ncomms10501] [PMID: 26883990]
[http://dx.doi.org/10.1038/ncomms10501] [PMID: 26883990]
[116]
Romero, D. Immunotherapy: PD-1 says goodbye, TIM-3 says hello. Nat. Rev. Clin. Oncol., 2016, 13(4), 202-203.
[http://dx.doi.org/10.1038/nrclinonc.2016.40] [PMID: 26977783]
[http://dx.doi.org/10.1038/nrclinonc.2016.40] [PMID: 26977783]
[117]
Parsa, A.T.; Waldron, J.S.; Panner, A.; Crane, C.A.; Parney, I.F.; Barry, J.J.; Cachola, K.E.; Murray, J.C.; Tihan, T.; Jensen, M.C.; Mischel, P.S.; Stokoe, D.; Pieper, R.O. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat. Med., 2007, 13(1), 84-88.
[http://dx.doi.org/10.1038/nm1517] [PMID: 17159987]
[http://dx.doi.org/10.1038/nm1517] [PMID: 17159987]
[118]
Peng, W.; Chen, J.Q.; Liu, C.; Malu, S.; Creasy, C.; Tetzlaff, M.T.; Xu, C.; McKenzie, J.A.; Zhang, C.; Liang, X.; Williams, L.J.; Deng, W.; Chen, G.; Mbofung, R.; Lazar, A.J.; Torres-Cabala, C.A.; Cooper, Z.A.; Chen, P.L.; Tieu, T.N.; Spranger, S.; Yu, X.; Bernatchez, C.; Forget, M.A.; Haymaker, C.; Amaria, R.; McQuade, J.L.; Glitza, I.C.; Cascone, T.; Li, H.S.; Kwong, L.N.; Heffernan, T.P.; Hu, J.; Bassett, R.L., Jr; Bosenberg, M.W.; Woodman, S.E.; Overwijk, W.W.; Lizée, G.; Roszik, J.; Gajewski, T.F.; Wargo, J.A.; Gershenwald, J.E.; Radvanyi, L.; Davies, M.A.; Hwu, P. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov., 2016, 6(2), 202-216.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0283] [PMID: 26645196]
[http://dx.doi.org/10.1158/2159-8290.CD-15-0283] [PMID: 26645196]
[119]
Peng, D.; Kryczek, I.; Nagarsheth, N.; Zhao, L.; Wei, S.; Wang, W.; Sun, Y.; Zhao, E.; Vatan, L.; Szeliga, W.; Kotarski, J.; Tarkowski, R.; Dou, Y.; Cho, K.; Hensley-Alford, S.; Munkarah, A.; Liu, R.; Zou, W. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature, 2015, 527(7577), 249-253.
[http://dx.doi.org/10.1038/nature15520] [PMID: 26503055]
[http://dx.doi.org/10.1038/nature15520] [PMID: 26503055]
[120]
Nagarsheth, N.; Peng, D.; Kryczek, I.; Wu, K.; Li, W.; Zhao, E.; Zhao, L.; Wei, S.; Frankel, T.; Vatan, L.; Szeliga, W.; Dou, Y.; Owens, S.; Marquez, V.; Tao, K.; Huang, E.; Wang, G.; Zou, W. PRC2 epigenetically silences Th1-type chemokines to suppress effector T-cell trafficking in colon cancer. Cancer Res., 2016, 76(2), 275-282.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1938] [PMID: 26567139]
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1938] [PMID: 26567139]
[121]
Kugelberg, E. Tumour immunology: Reducing silence to improve therapy. Nat. Rev. Immunol., 2015, 15(12), 730.
[http://dx.doi.org/10.1038/nri3941] [PMID: 26542634]
[http://dx.doi.org/10.1038/nri3941] [PMID: 26542634]
[122]
Zajac, A.J.; Blattman, J.N.; Murali-Krishna, K.; Sourdive, D.J.; Suresh, M.; Altman, J.D.; Ahmed, R. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med., 1998, 188(12), 2205-2213.
[http://dx.doi.org/10.1084/jem.188.12.2205] [PMID: 9858507]
[http://dx.doi.org/10.1084/jem.188.12.2205] [PMID: 9858507]
[123]
Wherry, E.J. T cell exhaustion. Nat. Immunol., 2011, 12(6), 492-499.
[http://dx.doi.org/10.1038/ni.2035] [PMID: 21739672]
[http://dx.doi.org/10.1038/ni.2035] [PMID: 21739672]
[124]
Blackburn, S.D.; Shin, H.; Freeman, G.J.; Wherry, E.J. Selective expansion of a subset of exhausted CD8 T cells by alphaPD-L1 blockade. Proc. Natl. Acad. Sci. USA, 2008, 105(39), 15016-15021.
[http://dx.doi.org/10.1073/pnas.0801497105] [PMID: 18809920]
[http://dx.doi.org/10.1073/pnas.0801497105] [PMID: 18809920]
[125]
Barber, D.L.; Wherry, E.J.; Masopust, D.; Zhu, B.; Allison, J.P.; Sharpe, A.H.; Freeman, G.J.; Ahmed, R. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 2006, 439(7077), 682-687.
[http://dx.doi.org/10.1038/nature04444] [PMID: 16382236]
[http://dx.doi.org/10.1038/nature04444] [PMID: 16382236]
[126]
Patsoukis, N.; Bardhan, K.; Chatterjee, P.; Sari, D.; Liu, B.; Bell, L.N.; Karoly, E.D.; Freeman, G.J.; Petkova, V.; Seth, P.; Li, L.; Boussiotis, V.A. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun., 2015, 6, 6692.
[http://dx.doi.org/10.1038/ncomms7692] [PMID: 25809635]
[http://dx.doi.org/10.1038/ncomms7692] [PMID: 25809635]
[127]
Jiang, Y.; Li, Y.; Zhu, B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis., 2015, 6, e1792.
[http://dx.doi.org/10.1038/cddis.2015.162] [PMID: 26086965]
[http://dx.doi.org/10.1038/cddis.2015.162] [PMID: 26086965]
[128]
Curiel, T.J.; Wei, S.; Dong, H.; Alvarez, X.; Cheng, P.; Mottram, P.; Krzysiek, R.; Knutson, K.L.; Daniel, B.; Zimmermann, M.C.; David, O.; Burow, M.; Gordon, A.; Dhurandhar, N.; Myers, L.; Berggren, R.; Hemminki, A.; Alvarez, R.D.; Emilie, D.; Curiel, D.T.; Chen, L.; Zou, W. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat. Med., 2003, 9(5), 562-567.
[http://dx.doi.org/10.1038/nm863] [PMID: 12704383]
[http://dx.doi.org/10.1038/nm863] [PMID: 12704383]
[129]
Kryczek, I.; Zou, L.; Rodriguez, P.; Zhu, G.; Wei, S.; Mottram, P.; Brumlik, M.; Cheng, P.; Curiel, T.; Myers, L.; Lackner, A.; Alvarez, X.; Ochoa, A.; Chen, L.; Zou, W. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J. Exp. Med., 2006, 203(4), 871-881.
[http://dx.doi.org/10.1084/jem.20050930] [PMID: 16606666]
[http://dx.doi.org/10.1084/jem.20050930] [PMID: 16606666]
[130]
Kim, K.; Skora, A.D.; Li, Z.; Liu, Q.; Tam, A.J.; Blosser, R.L.; Diaz, L.A., Jr Papadopoulos, N.; Kinzler, K.W.; Vogelstein, B.; Zhou, S. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc. Natl. Acad. Sci. USA, 2014, 111(32), 11774-11779.
[http://dx.doi.org/10.1073/pnas.1410626111] [PMID: 25071169]
[http://dx.doi.org/10.1073/pnas.1410626111] [PMID: 25071169]
[131]
De Henau, O.; Rausch, M.; Winkler, D.; Campesato, L.F.; Liu, C.; Cymerman, D.H.; Budhu, S.; Ghosh, A.; Pink, M.; Tchaicha, J.; Douglas, M.; Tibbitts, T.; Sharma, S.; Proctor, J.; Kosmider, N.; White, K.; Stern, H.; Soglia, J.; Adams, J.; Palombella, V.J.; McGovern, K.; Kutok, J.L.; Wolchok, J.D.; Merghoub, T. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells. Nature, 2016, 539(7629), 443-447.
[http://dx.doi.org/10.1038/nature20554] [PMID: 27828943]
[http://dx.doi.org/10.1038/nature20554] [PMID: 27828943]
[132]
Schmid, M.C.; Avraamides, C.J.; Dippold, H.C.; Franco, I.; Foubert, P.; Ellies, L.G.; Acevedo, L.M.; Manglicmot, J.R.; Song, X.; Wrasidlo, W.; Blair, S.L.; Ginsberg, M.H.; Cheresh, D.A.; Hirsch, E.; Field, S.J.; Varner, J.A. Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3kγ, a single convergent point promoting tumor inflammation and progression. Cancer Cell, 2011, 19(6), 715-727.
[http://dx.doi.org/10.1016/j.ccr.2011.04.016] [PMID: 21665146]
[http://dx.doi.org/10.1016/j.ccr.2011.04.016] [PMID: 21665146]
[133]
Di Mitri, D.; Toso, A.; Alimonti, A. Molecular pathways: targeting tumor-infiltrating myeloid-derived suppressor cells for cancer therapy. Clin. Cancer Res., 2015, 21(14), 3108-3112.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2261] [PMID: 25967145]
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2261] [PMID: 25967145]
[134]
Platten, M.; Wick, W.; Van den Eynde, B.J. Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res., 2012, 72(21), 5435-5440.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-0569] [PMID: 23090118]
[http://dx.doi.org/10.1158/0008-5472.CAN-12-0569] [PMID: 23090118]
[135]
Prendergast, G.C.; Smith, C.; Thomas, S.; Mandik-Nayak, L.; Laury-Kleintop, L.; Metz, R.; Muller, A.J. Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer. Cancer Immunol. Immunother., 2014, 63(7), 721-735.
[http://dx.doi.org/10.1007/s00262-014-1549-4] [PMID: 24711084]
[http://dx.doi.org/10.1007/s00262-014-1549-4] [PMID: 24711084]
[136]
Holmgaard, R.B.; Zamarin, D.; Munn, D.H.; Wolchok, J.D.; Allison, J.P. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J. Exp. Med., 2013, 210(7), 1389-1402.
[http://dx.doi.org/10.1084/jem.20130066] [PMID: 23752227]
[http://dx.doi.org/10.1084/jem.20130066] [PMID: 23752227]
[139]
Viaud, S.; Saccheri, F.; Mignot, G.; Yamazaki, T.; Daillère, R.; Hannani, D.; Enot, D.P.; Pfirschke, C.; Engblom, C.; Pittet, M.J.; Schlitzer, A.; Ginhoux, F.; Apetoh, L.; Chachaty, E.; Woerther, P.L.; Eberl, G.; Bérard, M.; Ecobichon, C.; Clermont, D.; Bizet, C.; Gaboriau-Routhiau, V.; Cerf-Bensussan, N.; Opolon, P.; Yessaad, N.; Vivier, E.; Ryffel, B.; Elson, C.O.; Doré, J.; Kroemer, G.; Lepage, P.; Boneca, I.G.; Ghiringhelli, F.; Zitvogel, L. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science, 2013, 342(6161), 971-976.
[http://dx.doi.org/10.1126/science.1240537] [PMID: 24264990]
[http://dx.doi.org/10.1126/science.1240537] [PMID: 24264990]
[140]
Iida, N.; Dzutsev, A.; Stewart, C.A.; Smith, L.; Bouladoux, N.; Weingarten, R.A.; Molina, D.A.; Salcedo, R.; Back, T.; Cramer, S.; Dai, R.M.; Kiu, H.; Cardone, M.; Naik, S.; Patri, A.K.; Wang, E.; Marincola, F.M.; Frank, K.M.; Belkaid, Y.; Trinchieri, G.; Goldszmid, R.S. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science, 2013, 342(6161), 967-970.
[http://dx.doi.org/10.1126/science.1240527] [PMID: 24264989]
[http://dx.doi.org/10.1126/science.1240527] [PMID: 24264989]
[141]
Cho, I.; Blaser, M.J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet., 2012, 13(4), 260-270.
[http://dx.doi.org/10.1038/nrg3182] [PMID: 22411464]
[http://dx.doi.org/10.1038/nrg3182] [PMID: 22411464]
[142]
Spranger, S.; Bao, R.; Gajewski, T.F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature, 2015, 523(7559), 231-235.
[http://dx.doi.org/10.1038/nature14404] [PMID: 25970248]
[http://dx.doi.org/10.1038/nature14404] [PMID: 25970248]
[143]
Klaus, A.; Birchmeier, W. Wnt signalling and its impact on development and cancer. Nat. Rev. Cancer, 2008, 8(5), 387-398.
[http://dx.doi.org/10.1038/nrc2389] [PMID: 18432252]
[http://dx.doi.org/10.1038/nrc2389] [PMID: 18432252]
[144]
Ying, Y.; Tao, Q. Epigenetic disruption of the WNT/beta-catenin signaling pathway in human cancers. Epigenetics, 2009, 4(5), 307-312.
[http://dx.doi.org/10.4161/epi.4.5.9371] [PMID: 19633433]
[http://dx.doi.org/10.4161/epi.4.5.9371] [PMID: 19633433]
[145]
Benhaj, K.; Akcali, K.C.; Ozturk, M. Redundant expression of canonical Wnt ligands in human breast cancer cell lines. Oncol. Rep., 2006, 15(3), 701-707.
[PMID: 16465433]
[PMID: 16465433]
[146]
Nusse, R. Wnt signaling in disease and in development. Cell Res., 2005, 15(1), 28-32.
[http://dx.doi.org/10.1038/sj.cr.7290260] [PMID: 15686623]
[http://dx.doi.org/10.1038/sj.cr.7290260] [PMID: 15686623]
[147]
Lugli, A.; Zlobec, I.; Minoo, P.; Baker, K.; Tornillo, L.; Terracciano, L.; Jass, J.R. Prognostic significance of the wnt signalling pathway molecules APC, beta-catenin and E-cadherin in colorectal cancer: a tissue microarray-based analysis. Histopathology, 2007, 50(4), 453-464.
[http://dx.doi.org/10.1111/j.1365-2559.2007.02620.x] [PMID: 17448021]
[http://dx.doi.org/10.1111/j.1365-2559.2007.02620.x] [PMID: 17448021]
[148]
MacDonald, B.T.; Tamai, K.; He, X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell, 2009, 17(1), 9-26.
[http://dx.doi.org/10.1016/j.devcel.2009.06.016] [PMID: 19619488]
[http://dx.doi.org/10.1016/j.devcel.2009.06.016] [PMID: 19619488]
[149]
Wallingford, J.B.; Habas, R. The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development, 2005, 132(20), 4421-4436.
[http://dx.doi.org/10.1242/dev.02068] [PMID: 16192308]
[http://dx.doi.org/10.1242/dev.02068] [PMID: 16192308]
[150]
Schwarz-Romond, T.; Asbrand, C.; Bakkers, J.; Kühl, M.; Schaeffer, H.J.; Huelsken, J.; Behrens, J.; Hammerschmidt, M.; Birchmeier, W. The ankyrin repeat protein DIVERSIN recruits casein kinase Iepsilon to the beta-catenin degradation complex and acts in both canonical Wnt and Wnt/JNK signaling. Genes Dev., 2002, 16(16), 2073-2084.
[http://dx.doi.org/10.1101/gad.230402] [PMID: 12183362]
[http://dx.doi.org/10.1101/gad.230402] [PMID: 12183362]
[151]
He, T.C.; Sparks, A.B.; Rago, C.; Hermeking, H.; Zawel, L.; da Costa, L.T.; Morin, P.J.; Vogelstein, B.; Kinzler, K.W. Identification of c-MYC as a target of the APC pathway. Science, 1998, 281(5382), 1509-1512.
[http://dx.doi.org/10.1126/science.281.5382.1509] [PMID: 9727977]
[http://dx.doi.org/10.1126/science.281.5382.1509] [PMID: 9727977]
[152]
Tetsu, O.; McCormick, F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature, 1999, 398(6726), 422-426.
[http://dx.doi.org/10.1038/18884] [PMID: 10201372]
[http://dx.doi.org/10.1038/18884] [PMID: 10201372]
[153]
Balkwill, F. Cancer and the chemokine network. Nat. Rev. Cancer, 2004, 4(7), 540-550.
[http://dx.doi.org/10.1038/nrc1388] [PMID: 15229479]
[http://dx.doi.org/10.1038/nrc1388] [PMID: 15229479]
[154]
Khuu, C.H.; Barrozo, R.M.; Hai, T.; Weinstein, S.L. Activating transcription factor 3 (ATF3) represses the expression of CCL4 in murine macrophages. Mol. Immunol., 2007, 44(7), 1598-1605.
[http://dx.doi.org/10.1016/j.molimm.2006.08.006] [PMID: 16982098]
[http://dx.doi.org/10.1016/j.molimm.2006.08.006] [PMID: 16982098]
[155]
Yan, L.; Della Coletta, L.; Powell, K.L.; Shen, J.; Thames, H.; Aldaz, C.M.; MacLeod, M.C. Activation of the canonical Wnt/β-catenin pathway in ATF3-induced mammary tumors. PLoS One, 2011, 6(1), e16515.
[http://dx.doi.org/10.1371/journal.pone.0016515] [PMID: 21304988]
[http://dx.doi.org/10.1371/journal.pone.0016515] [PMID: 21304988]
[156]
Hu-Lieskovan, S.; Homet Moreno, B.; Ribas, A.; Excluding, T.; Excluding, T. Cells: Is β-catenin the full story? Cancer Cell, 2015, 27(6), 749-750.
[http://dx.doi.org/10.1016/j.ccell.2015.05.014] [PMID: 26058073]
[http://dx.doi.org/10.1016/j.ccell.2015.05.014] [PMID: 26058073]
[157]
Kahn, M. Can we safely target the WNT pathway? Nat. Rev. Drug Discov., 2014, 13(7), 513-532.
[http://dx.doi.org/10.1038/nrd4233] [PMID: 24981364]
[http://dx.doi.org/10.1038/nrd4233] [PMID: 24981364]
[158]
Jimmy Carter announces he is cancer-free. CNN, AVAILABLE
AT: http://www.cnn.com/2015/12/06/politics/jimmy-carter-cancer-free/2016. [Updated 2016 July].
[159]
Survival statistics for malignant melanoma. Cancer Research
UK, Available AT. http://www.cancerresearchuk. org/about-cancer/type/melanoma/treatment/melanoma-statistics-and-outlook2016. [Updated 2016 July].