Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Advances in the Prediction of Protein Aggregation Propensity

Author(s): Irantzu Pallarés* and Salvador Ventura*

Volume 26, Issue 21, 2019

Page: [3911 - 3920] Pages: 10

DOI: 10.2174/0929867324666170705121754

Price: $65

Abstract

Background: Protein aggregation into β-sheet-enriched insoluble assemblies is being found to be associated with an increasing number of debilitating human pathologies, such as Alzheimer’s disease or type 2 diabetes, but also with premature aging. Furthermore, protein aggregation represents a major bottleneck in the production and marketing of proteinbased therapeutics. Thus, the development of methods to accurately forecast the aggregation propensity of a certain protein is of much value.

Methods/Results: A myriad of in vitro and in vivo aggregation studies have shown that the aggregation propensity of a certain polypeptide sequence is highly dependent on its intrinsic properties and, in most cases, driven by specific short regions of high aggregation propensity. These observations have fostered the development of a first generation of algorithms aimed to predict protein aggregation propensities from the protein sequence. A second generation of programs able to map protein aggregation on protein structures is emerging. Herein, we review the most representative online accessible predictive tools, emphasizing their main distinctive features and the range of applications.

Conclusion: In this review, we describe representative biocomputational approaches to evaluate the aggregation properties of protein sequences and structures, while illustrating how they can become very useful tools to target protein aggregation in biomedicine and biotechnology.

Keywords: Amyloid, bioinformatics, protein aggregation, protein structure, therapeutic proteins, biocomputational approaches.

[1]
Chiti, F.; Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem., 2006, 75, 333-366.
[http://dx.doi.org/10.1146/annurev.biochem.75.101304.123901] [PMID: 16756495]
[2]
Fowler, D.M.; Koulov, A.V.; Balch, W.E.; Kelly, J.W. Functional amyloid--from bacteria to humans. Trends Biochem. Sci., 2007, 32(5), 217-224.
[http://dx.doi.org/10.1016/j.tibs.2007.03.003] [PMID: 17412596]
[3]
Ventura, S.; Villaverde, A. Protein quality in bacterial inclusion bodies. Trends Biotechnol., 2006, 24(4), 179-185.
[http://dx.doi.org/10.1016/j.tibtech.2006.02.007] [PMID: 16503059]
[4]
Rosenberg, A.S. Effects of protein aggregates: An immunologic perspective. AAPS J., 2006, 8(3), E501-E507.
[http://dx.doi.org/10.1208/aapsj080359] [PMID: 17025268]
[5]
Goldschmidt, L.; Teng, P.K.; Riek, R.; Eisenberg, D. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc. Natl. Acad. Sci. USA, 2010, 107(8), 3487-3492.
[http://dx.doi.org/10.1073/pnas.0915166107] [PMID: 20133726]
[6]
Chiti, F.; Calamai, M.; Taddei, N.; Stefani, M.; Ramponi, G.; Dobson, C.M. Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases. Proc. Natl. Acad. Sci. USA, 2002, 99(Suppl. 4), 16419-16426.
[http://dx.doi.org/10.1073/pnas.212527999] [PMID: 12374855]
[7]
Ventura, S.; Zurdo, J.; Narayanan, S.; Parreño, M.; Mangues, R.; Reif, B.; Chiti, F.; Giannoni, E.; Dobson, C.M.; Aviles, F.X.; Serrano, L. Short amino acid stretches can mediate amyloid formation in globular proteins: The Src homology 3 (SH3) case. Proc. Natl. Acad. Sci. USA, 2004, 101(19), 7258-7263.
[http://dx.doi.org/10.1073/pnas.0308249101] [PMID: 15123800]
[8]
Teng, P.K.; Eisenberg, D. Short protein segments can drive a non-fibrillizing protein into the amyloid state. Protein Eng. Des. Sel., 2009, 22(8), 531-536.
[http://dx.doi.org/10.1093/protein/gzp037] [PMID: 19602569]
[9]
Sabaté, R.; Espargaró, A.; de Groot, N.S.; Valle-Delgado, J.J.; Fernàndez-Busquets, X.; Ventura, S. The role of protein sequence and amino acid composition in amyloid formation: Scrambling and backward reading of IAPP amyloid fibrils. J. Mol. Biol., 2010, 404(2), 337-352.
[http://dx.doi.org/10.1016/j.jmb.2010.09.052] [PMID: 20887731]
[10]
Chiti, F.; Stefani, M.; Taddei, N.; Ramponi, G.; Dobson, C.M. Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature, 2003, 424(6950), 805-808.
[http://dx.doi.org/10.1038/nature01891] [PMID: 12917692]
[11]
DuBay, K.F.; Pawar, A.P.; Chiti, F.; Zurdo, J.; Dobson, C.M.; Vendruscolo, M. Prediction of the absolute aggregation rates of amyloidogenic polypeptide chains. J. Mol. Biol., 2004, 341(5), 1317-1326.
[http://dx.doi.org/10.1016/j.jmb.2004.06.043] [PMID: 15302561]
[12]
Pawar, A.P.; Dubay, K.F.; Zurdo, J.; Chiti, F.; Vendruscolo, M.; Dobson, C.M. Prediction of “aggregation-prone” and “aggregation-susceptible” regions in proteins associated with neurodegenerative diseases. J. Mol. Biol., 2005, 350(2), 379-392.
[http://dx.doi.org/10.1016/j.jmb.2005.04.016] [PMID: 15925383]
[13]
Tartaglia, G.G.; Vendruscolo, M. The Zyggregator method for predicting protein aggregation propensities. Chem. Soc. Rev., 2008, 37(7), 1395-1401.
[http://dx.doi.org/10.1039/b706784b] [PMID: 18568165]
[14]
Tartaglia, G.G.; Pawar, A.P.; Campioni, S.; Dobson, C.M.; Chiti, F.; Vendruscolo, M. Prediction of aggregation-prone regions in structured proteins. J. Mol. Biol., 2008, 380(2), 425-436.
[http://dx.doi.org/10.1016/j.jmb.2008.05.013] [PMID: 18514226]
[15]
Tartaglia, G.G.; Cavalli, A.; Vendruscolo, M. Prediction of local structural stabilities of proteins from their amino acid sequences. Structure, 2007, 15(2), 139-143.
[http://dx.doi.org/10.1016/j.str.2006.12.007] [PMID: 17292832]
[16]
Guerois, R.; Nielsen, J.E.; Serrano, L. Predicting changes in the stability of proteins and protein complexes: A study of more than 1000 mutations. J. Mol. Biol., 2002, 320(2), 369-387.
[http://dx.doi.org/10.1016/S0022-2836(02)00442-4] [PMID: 12079393]
[17]
Sánchez de Groot, N.; Pallarés, I.; Avilés, F.X.; Vendrell, J.; Ventura, S. Prediction of “hot spots” of aggregation in disease-linked polypeptides. BMC Struct. Biol., 2005, 5, 18.
[http://dx.doi.org/10.1186/1472-6807-5-18] [PMID: 16197548]
[18]
de Groot, N.S.; Aviles, F.X.; Vendrell, J.; Ventura, S. Mutagenesis of the central hydrophobic cluster in Abeta42 Alzheimer’s peptide. Side-chain properties correlate with aggregation propensities. FEBS J., 2006, 273(3), 658-668.
[http://dx.doi.org/10.1111/j.1742-4658.2005.05102.x] [PMID: 16420488]
[19]
Conchillo-Solé, O.; de Groot, N.S.; Avilés, F.X.; Vendrell, J.; Daura, X.; Ventura, S. AGGRESCAN: A server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics, 2007, 8, 65.
[http://dx.doi.org/10.1186/1471-2105-8-65] [PMID: 17324296]
[20]
Zambrano, R.; Jamroz, M.; Szczasiuk, A.; Pujols, J.; Kmiecik, S.; Ventura, S. AGGRESCAN3D (A3D): Server for prediction of aggregation properties of protein structures. Nucleic Acids Res., 2015, 43(W1)W306-13
[http://dx.doi.org/10.1093/nar/gkv359] [PMID: 25883144]
[21]
Chou, P.Y.; Fasman, G.D. Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry, 1974, 13(2), 211-222.
[http://dx.doi.org/10.1021/bi00699a001] [PMID: 4358939]
[22]
Zibaee, S.; Makin, O.S.; Goedert, M.; Serpell, L.C. A simple algorithm locates beta-strands in the amyloid fibril core of alpha-synuclein, Abeta, and tau using the amino acid sequence alone. Protein Sci., 2007, 16(5), 906-918.
[http://dx.doi.org/10.1110/ps.062624507] [PMID: 17456743]
[23]
Garbuzynskiy, S.O.; Lobanov, M.Y.; Galzitskaya, O.V. FoldAmyloid: A method of prediction of amyloidogenic regions from protein sequence. Bioinformatics, 2010, 26(3), 326-332.
[http://dx.doi.org/10.1093/bioinformatics/btp691] [PMID: 20019059]
[24]
Galzitskaya, O.V.; Garbuzynskiy, S.O.; Lobanov, M.Y. Prediction of amyloidogenic and disordered regions in protein chains. PLOS Comput. Biol., 2006, 2(12)e177
[http://dx.doi.org/10.1371/journal.pcbi.0020177] [PMID: 17196033]
[25]
Balbirnie, M.; Grothe, R.; Eisenberg, D.S. An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid. Proc. Natl. Acad. Sci. USA, 2001, 98(5), 2375-2380.
[http://dx.doi.org/10.1073/pnas.041617698] [PMID: 11226247]
[26]
Saunders, H.M.; Bottomley, S.P. Multi-domain misfolding: Understanding the aggregation pathway of polyglutamine proteins. Protein Eng. Des. Sel., 2009, 22(8), 447-451.
[http://dx.doi.org/10.1093/protein/gzp033] [PMID: 19589877]
[27]
Trovato, A.; Seno, F.; Tosatto, S.C. The PASTA server for protein aggregation prediction. Protein Eng. Des. Sel., 2007, 20(10), 521-523.
[http://dx.doi.org/10.1093/protein/gzm042] [PMID: 17720750]
[28]
Walsh, I.; Seno, F.; Tosatto, S. C.; Trovato, A. PASTA 2.0: An improved server for protein aggregation prediction Nucleic Acids Res, 2014, 42(Web Server issue), W301-7.
[29]
Nelson, R.; Sawaya, M.R.; Balbirnie, M.; Madsen, A.O.; Riekel, C.; Grothe, R.; Eisenberg, D. Structure of the cross-beta spine of amyloid-like fibrils. Nature, 2005, 435(7043), 773-778.
[http://dx.doi.org/10.1038/nature03680] [PMID: 15944695]
[30]
Nelson, R.; Eisenberg, D. Recent atomic models of amyloid fibril structure. Curr. Opin. Struct. Biol., 2006, 16(2), 260-265.
[http://dx.doi.org/10.1016/j.sbi.2006.03.007] [PMID: 16563741]
[31]
Thompson, M.J.; Sievers, S.A.; Karanicolas, J.; Ivanova, M.I.; Baker, D.; Eisenberg, D. The 3D profile method for identifying fibril-forming segments of proteins. Proc. Natl. Acad. Sci. USA, 2006, 103(11), 4074-4078.
[http://dx.doi.org/10.1073/pnas.0511295103] [PMID: 16537487]
[32]
Kuhlman, B.; Baker, D. Native protein sequences are close to optimal for their structures. Proc. Natl. Acad. Sci. USA, 2000, 97(19), 10383-10388.
[http://dx.doi.org/10.1073/pnas.97.19.10383] [PMID: 10984534]
[33]
Rousseau, F.; Schymkowitz, J.; Serrano, L. Protein aggregation and amyloidosis: Confusion of the kinds? Curr. Opin. Struct. Biol., 2006, 16(1), 118-126.
[http://dx.doi.org/10.1016/j.sbi.2006.01.011] [PMID: 16434184]
[34]
States, A.; Wang, L.; Schubert, D.; Sawaya, M. R.; Eisenberg, D.; Riek, R. Multidimensional Structure – Activity Relationship of a Protein in Its;, 2010, 49, 3904-3908.
[35]
Maurer-Stroh, S.; Debulpaep, M.; Kuemmerer, N.; Lopez de la Paz, M.; Martins, I.C.; Reumers, J.; Morris, K.L.; Copland, A.; Serpell, L.; Serrano, L.; Schymkowitz, J.W.; Rousseau, F. Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat. Methods, 2010, 7(3), 237-242.
[http://dx.doi.org/10.1038/nmeth.1432] [PMID: 20154676]
[36]
Esteras-Chopo, A.; Serrano, L.; López de la Paz, M. The amyloid stretch hypothesis: Recruiting proteins toward the dark side. Proc. Natl. Acad. Sci. USA, 2005, 102(46), 16672-16677.
[http://dx.doi.org/10.1073/pnas.0505905102] [PMID: 16263932]
[37]
Fernandez-Escamilla, A.M.; Rousseau, F.; Schymkowitz, J.; Serrano, L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat. Biotechnol., 2004, 22(10), 1302-1306.
[http://dx.doi.org/10.1038/nbt1012] [PMID: 15361882]
[38]
Sabate, R.; Rousseau, F.; Schymkowitz, J.; Ventura, S. What makes a protein sequence a prion? PLOS Comput. Biol., 2015, 11(1)e1004013
[http://dx.doi.org/10.1371/journal.pcbi.1004013] [PMID: 25569335]
[39]
Tsolis, A.C.; Papandreou, N.C.; Iconomidou, V.A.; Hamodrakas, S.J. A consensus method for the prediction of ‘aggregation-prone’ peptides in globular proteins. PLoS One, 2013, 8(1)e54175
[http://dx.doi.org/10.1371/journal.pone.0054175] [PMID: 23326595]
[40]
Frousios, K.K.; Iconomidou, V.A.; Karletidi, C.M.; Hamodrakas, S.J. Amyloidogenic determinants are usually not buried. BMC Struct. Biol., 2009, 9, 44.
[http://dx.doi.org/10.1186/1472-6807-9-44] [PMID: 19589171]
[41]
Emily, M.; Talvas, A.; Delamarche, C. MetAmyl: A METa-predictor for AMYLoid proteins. PLoS One, 2013, 8(11)e79722
[http://dx.doi.org/10.1371/journal.pone.0079722] [PMID: 24260292]
[42]
Chennamsetty, N.; Voynov, V.; Kayser, V.; Helk, B.; Trout, B.L. Design of therapeutic proteins with enhanced stability. Proc. Natl. Acad. Sci. USA, 2009, 106(29), 11937-11942.
[http://dx.doi.org/10.1073/pnas.0904191106] [PMID: 19571001]
[43]
Black, S.D.; Mould, D.R. Development of hydrophobicity parameters to analyze proteins which bear post- or cotranslational modifications. Anal. Biochem., 1991, 193(1), 72-82.
[http://dx.doi.org/10.1016/0003-2697(91)90045-U] [PMID: 2042744]
[44]
Tiwari, M.K.; Kepp, K.P. Modeling the Aggregation Propensity and Toxicity of Amyloid-β Variants. J. Alzheimers Dis., 2015, 47(1), 215-229.
[http://dx.doi.org/10.3233/JAD-150046] [PMID: 26402770]
[45]
Sormanni, P.; Aprile, F.A.; Vendruscolo, M. The CamSol method of rational design of protein mutants with enhanced solubility. J. Mol. Biol., 2015, 427(2), 478-490.
[http://dx.doi.org/10.1016/j.jmb.2014.09.026] [PMID: 25451785]
[46]
De Baets, G.; Van Durme, J.; van der Kant, R.; Schymkowitz, J.; Rousseau, F. Solubis: Optimize your protein. Bioinformatics, 2015, 31(15), 2580-2582.
[http://dx.doi.org/10.1093/bioinformatics/btv162] [PMID: 25792555]
[47]
Schymkowitz, J.; Borg, J.; Stricher, F.; Nys, R.; Rousseau, F.; Serrano, L. The FoldX web server: An online force field. Nucleic Acids Res,, 2005, 33(Web Server issue), W382-388.
[http://dx.doi.org/10.1093/nar/gki387]
[48]
Van Durme, J.; De Baets, G.; Van Der Kant, R.; Ramakers, M.; Ganesan, A.; Wilkinson, H.; Gallardo, R.; Rousseau, F.; Schymkowitz, J. Solubis: A webserver to reduce protein aggregation through mutation. Protein Eng. Des. Sel., 2016, 29(8), 285-289.
[http://dx.doi.org/10.1093/protein/gzw019] [PMID: 27284085]
[49]
Jamroz, M.; Kolinski, A.; Kmiecik, S. CABS-flex: Server for fast simulation of protein structure fluctuations. Nucleic Acids Res., 2013, 41(Web Server issue), W427-431.
[http://dx.doi.org/10.1093/nar/gkt332] [PMID: 23658222]
[50]
Chen, Y.; Dokholyan, N.V. Natural selection against protein aggregation on self-interacting and essential proteins in yeast, fly, and worm. Mol. Biol. Evol., 2008, 25(8), 1530-1533.
[http://dx.doi.org/10.1093/molbev/msn122] [PMID: 18503047]
[51]
Tartaglia, G.G.; Vendruscolo, M. Proteome-level interplay between folding and aggregation propensities of proteins. J. Mol. Biol., 2010, 402(5), 919-928.
[http://dx.doi.org/10.1016/j.jmb.2010.08.013] [PMID: 20709078]
[52]
Ciryam, P.; Tartaglia, G.G.; Morimoto, R.I.; Dobson, C.M.; Vendruscolo, M. Widespread aggregation and neurodegenerative diseases are associated with supersaturated proteins. Cell Rep., 2013, 5(3), 781-790.
[http://dx.doi.org/10.1016/j.celrep.2013.09.043] [PMID: 24183671]
[53]
Walther, D.M.; Kasturi, P.; Zheng, M.; Pinkert, S.; Vecchi, G.; Ciryam, P.; Morimoto, R.I.; Dobson, C.M.; Vendruscolo, M.; Mann, M.; Hartl, F.U. Widespread Proteome Remodeling and Aggregation in Aging C. elegans. Cell, 2015, 161(4), 919-932.
[http://dx.doi.org/10.1016/j.cell.2015.03.032] [PMID: 25957690]
[54]
Castillo, V.; Ventura, S. Amyloidogenic regions and interaction surfaces overlap in globular proteins related to conformational diseases. PLOS Comput. Biol., 2009, 5(8)e1000476
[http://dx.doi.org/10.1371/journal.pcbi.1000476] [PMID: 19696882]
[55]
Agrawal, N.J.; Kumar, S.; Wang, X.; Helk, B.; Singh, S.K.; Trout, B.L. Aggregation in protein-based biotherapeutics: Computational studies and tools to identify aggregation-prone regions. J. Pharm. Sci., 2011, 100(12), 5081-5095.
[http://dx.doi.org/10.1002/jps.22705] [PMID: 21789769]
[56]
Carter, P.J. Potent antibody therapeutics by design. Nat. Rev. Immunol., 2006, 6(5), 343-357.
[http://dx.doi.org/10.1038/nri1837] [PMID: 16622479]
[57]
Kumar, S.; Thangakani, A.M.; Nagarajan, R.; Singh, S.K.; Velmurugan, D.; Gromiha, M.M. Autoimmune responses to soluble aggregates of amyloidogenic proteins involved in neurodegenerative diseases: Overlapping aggregation prone and autoimmunogenic regions. Sci. Rep., 2016, 6, 22258.
[http://dx.doi.org/10.1038/srep22258] [PMID: 26924748]
[58]
Cendron, L.; Trovato, A.; Seno, F.; Folli, C.; Alfieri, B.; Zanotti, G.; Berni, R. Amyloidogenic potential of transthyretin variants: Insights from structural and computational analyses. J. Biol. Chem., 2009, 284(38), 25832-25841.
[http://dx.doi.org/10.1074/jbc.M109.017657] [PMID: 19602727]
[59]
Bickle, L.; Hopwood, J.J.; Karageorgos, L. Analysis of sheep α-synuclein provides a molecular strategy for the reduction of fibrillation. Biochim. Biophys. Acta. Proteins Proteomics, 2017, 1865(3), 261-273.
[http://dx.doi.org/10.1016/j.bbapap.2016.12.008] [PMID: 28007442]
[60]
McCorvie, T.J.; Kopec, J.; Pey, A.L.; Fitzpatrick, F.; Patel, D.; Chalk, R.; Shrestha, L.; Yue, W.W. Molecular basis of classic galactosemia from the structure of human galactose 1-phosphate uridylyltransferase. Hum. Mol. Genet., 2016, 25(11), 2234-2244.
[http://dx.doi.org/10.1093/hmg/ddw091] [PMID: 27005423]
[61]
Cheruvara, H.; Allen-Baume, V.L.; Kad, N.M.; Mason, J.M. Intracellular screening of a peptide library to derive a potent peptide inhibitor of α-synuclein aggregation. J. Biol. Chem., 2015, 290(12), 7426-7435.
[http://dx.doi.org/10.1074/jbc.M114.620484] [PMID: 25616660]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy