Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

General Research Article

Preparation and Characterization of Copper Oxide Nanoparticles Through Solid State Thermal Decomposition of an Aqua Nitrato Copper(II) Complex with a Tridentate Schiff-base Ligand as a New Precursor

Author(s): Niaz Monadi, Samira Saeednia*, Parvaneh Iranmanesh, Mehdi H. Ardakani and Samira Sinaei

Volume 9, Issue 1, 2019

Page: [92 - 100] Pages: 9

DOI: 10.2174/2210681207666170703160109

Price: $65

Abstract

Introduction: In this study the synthesis and characterization of copper oxide nanoparticles via solid state thermal decomposition of a recently synthesized aqua nitrato copper(II) complex with a tridentate Schiff-base ligand (1) as a new precursor are reported.

Materials & Methods: The copper complexes were obtained by sonochemical and solvothermal process and characterized by Scanning Electron Microscopy (SEM), X-ray powder Diffraction (XRD) and FT-IR spectroscopy. The thermal stability of compound (1) was studied by Thermogravimetric Analysis (TGA). The amount of initial reagents and the role of reaction time on size and morphology of nanostructure compound (1) were studied. CuO nanoparticles were simply synthesized at 500 oC under air atmosphere.

Results & Conclusion: The diameter of CuO nanoparticles was estimated to be about 200 and 30 nm from copper complex precursor obtained by sonochemical and solvothermal methods respectively.

Keywords: Copper complex, copper(II) oxide, nanostructures, solvothermal process, sonochemistry, Schiff-base ligand.

Graphical Abstract

[1]
Koch, C.C. Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Script. Mater., 2003, 49, 657-662.
[2]
Jin, R.; Cao, Y.; Mirkin, C.A.; Kelly, K.L.; Schatz, G.C.; Zheng, J.G. Photoinduced conversion of silver nanospheres to nanoprisms. Science, 2001, 294, 1901-1903.
[3]
Kim, F.; Connor, S.; Song, H.; Kuykendall, T.; Yang, P. Platonic gold nanocrystals. Angew. Chem., 2004, 116, 3759-3763.
[4]
Jun, Y-w.; Seo, J-w.; Oh, S.J.; Cheon, J. Recent advances in the shape control of inorganic nano-building blocks. Coord. Chem. Rev., 2005, 249, 1766-1775.
[5]
Silva, A.R.; Budarin, V.; Clark, J.H.; Freire, C.; De Castro, B. Organo-functionalized activated carbons as supports for the covalent attachment of a chiral manganese (III) salen complex. Carbon, 2007, 45, 1951-1964.
[6]
Bang, J.H.; Suslick, K.S. Applications of ultrasound to the synthesis of nanostructured materials. Adv. Mater., 2010, 22, 1039-1059.
[7]
Suslick, K.S.; Choe, S-B.; Cichowlas, A.A.; Grinstaff, M.W. Sonochemical synthesis of amorphous iron. Nature, 1991, 353, 414-416.
[8]
Safarifard, V.; Morsali, A. Applications of ultrasound to the synthesis of nanoscale metal–organic coordination polymers. Coord. Chem. Rev., 2015, 292, 1-14.
[9]
Askarinejad, A.; Morsali, A. Direct ultrasonic-assisted synthesis of sphere-like nanocrystals of spinel Co3O4 and Mn3O4. Ultrason. Sonochem., 2009, 16, 124-131.
[10]
Safarifard, V.; Morsali, A. Sonochemical syntheses and characterization of nano-sized lead(II) coordination polymer with ligand 1H-1,2,4-triazole-3-carboxylate. Ultrason. Sonochem., 2012, 19, 300-306.
[11]
Iranmanesh, P.; Saeednia, S.; Rashidi Dafeh, S.; Yahyanasab, F. Ultrasound assisted synthesis and characterization of Mn doped CdS nanocrystalline zinc-blendes. J. Nanostruc., 2015, 5, 375-383.
[12]
Sun, W.; Wang, H.; Xia, C.; Li, J.; Zhao, P. Chiral‐Mn (Salen)‐complex‐catalyzed kinetic resolution of secondary alcohols in water. Angew. Chem. Int. Ed., 2003, 42, 1042-1044.
[13]
Feldblyum, J.I.; Wong-Foy, A.G.; Matzger, A.J. Non-interpenetrated IRMOF-8: Synthesis, activation, and gas sorption. Chem. Commun., 2012, 48, 9828-9830.
[14]
Saeednia, S.; Iranmanesh, P.; Ardakani, M.H.; Mohammadi, M.; Norouzi, G. Phenoxo bridged dinuclear Zn(II) Schiff base complex as new precursor for preparation zinc oxide nanoparticles: Synthesis, characterization, crystal structures and photoluminescence studies. Mater. Res. Bull., 2016, 78, 1-10.
[15]
Maruyama, T. Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate. Solar Energy Mater. Solar. Cells, 1998, 56, 85-92.
[16]
Chen, J.T.; Zhang, F.; Wang, J.; Zhang, G.A.; Miao, B.B.; Fan, X.Y.; Yan, D.; Yan, P.X. CuO nanowires synthesized by thermal oxidation route. J. Alloys Comp., 2008, 454, 268-273.
[17]
Zhang, H.; Li, S.; Ma, X.; Yang, D. Controllable growth of dendrite-like CuO nanostructures by ethylene glycol assisted hydrothermal process. Mater. Res. Bull., 2008, 43, 1291-1296.
[18]
Gao, P.; Chen, Y.; Lv, H.; Li, X.; Wang, Y.; Zhang, Q. Synthesis of CuO nanoribbon arrays with noticeable electrochemical hydrogen storage ability by a simple precursor dehydration route at lower temperature. Intl . J. Hydrogen Energy, 2009, 34, 3065-3069.
[19]
Arbuzova, T.I.; Gizhevskii, B.A.; Naumov, S.V.; Korolev, A.V.; Arbuzov, V.L.; Shal’nov, K.V.; Druzhkov, A.P. Temporal changes in magnetic properties of high-density CuO nanoceramics. J. Magnet. Magnet. Mater., 2003, 258-259, 342-344.
[20]
Aslani, A.; Oroojpour, V. CO gas sensing of CuO nanostructures, synthesized by an assisted solvothermal wet chemical route. Physica B Cond. Matter,, 2011, 406, 144-149.
[21]
Keyson, D.; Volanti, D.P.; Cavalcante, L.S.; Simões, A.Z.; Varela, J.A.; Longo, E. CuO urchin-nanostructures synthesized from a domestic hydrothermal microwave method. Mater. Res. Bull., 2008, 43, 771-775.
[22]
Li, Y.; Liang, J.; Tao, Z.; Chen, J. CuO particles and plates: Synthesis and gas-sensor application. Mater. Res. Bull., 43, 2380-2385.
[23]
Kong, M.; Zhang, W.; Yang, Z.; Weng, S.; Chen, Z. Facile synthesis of CuO hollow nanospheres assembled by nanoparticles and their electrochemical performance. Appl. Surface . Sci., 2011, 258, 1317-1321.
[24]
Mohammad Shafiee, M.R.; Kargar, M.; Ghashang, M. Simple synthesis of copper oxide nanoparticles in the presence of extractive rosmarinus officinalis leaves. J. Nanostruc., 2016, 6, 28-31.
[25]
Nath, A.; Khare, A. Size induced structural modifications in copper oxide nanoparticles synthesized via laser ablation in liquids. J. Appl. Phys., 2011, 110, 043111.
[26]
Anandan, S.; Lee, G-J.; Wu, J.J. Sonochemical synthesis of CuO nanostructures with different morphology. Ultrason. Sonochem., 2012, 19, 682-686.
[27]
MERCURY 1.4.1, C.C.C.D.C., 12 Union Road, Cambridge, CB2 1EZ, UK, 2001-2005.
[28]
Nakamoto, K. Infrared and Raman spectra of inorganic and coordination compounds; Wiley Online Library, 1986.
[29]
Schobinger-Papamantellos, P.; Buschow, K.; De Groot, C.; De Boer, F.; Böttger, G.; Ritter, C. Magnetic ordering of Pr6Fe13Si and Nd6Fe13Au studied by neutron diffraction. J. Phys. Cond. Matter, 1999, 11, 4469.
[30]
Ding, B.; Liu, Y-Y.; Zhao, X-J.; Yang, E-C.; Wang, X.G. Hydrothermal synthesis and characterization of a novel luminescent lead (II) framework extended by novel Pb-μ 1, 1-(N) CS-Pb bridges. J. Mol. Struc., 2009, 920, 248-251.
[31]
Saeednia, S.; Ardakani, M.H.; Pakdin-Parizi, Z.; Iranmanesh, P.; Sinaei, S. Solvent-free chemoselective oxidation of alcohols by hydrogen peroxide using a new synthesized copper complex as reusable heterogeneous nanocatalyst. J. Iran. Chem. Soc., 2016, 13, 1963-1975.
[32]
Amiri, O.; Salavati-Niasari, M.; Sabet, M.; Ghanbari, D. Synthesis and characterization of CuInS 2 microsphere under controlled reaction conditions and its application in low-cost solar cells. Mater. Sci. Semicond. Process., 2013, 16, 1485-1494.
[33]
El-Trass, A.; ElShamy, H.; El-Mehasseb, I.; El-Kemary, M. CuO nanoparticles: Synthesis, characterization, optical properties and interaction with amino acids. Appl. Surface . Sci., 2012, 258, 2997-3001.
[34]
Saeednia, S.; Iranmanesh, P.; Rudbari, H.A.; Saeednia, L. Sonochemical synthesis of a new nano-scale 1D copper organic coordination polymer: Thermal and spectroscopic characterizations. J. Macromol. Sci. Part A, 2016, 53, 227-236.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy