Review Article

胆囊收缩素和胆囊收缩素-1受体影响胆固醇胆结石形成的分子机制的最新进展。

卷 26, 期 19, 2019

页: [3407 - 3423] 页: 17

弟呕挨: 10.2174/0929867324666170619104801

价格: $65

摘要

胆囊收缩素(CCK)是小肠上部肠内分泌I细胞产生的一种重要的神经肠肽激素。富含蛋白质和脂肪的食物在触发肠道CCK分泌中起着重要作用。碳水化合物仅刺激少量的CCK释放。 CCK-1受体(CCK-1R)主要位于胆囊,Oddi括约肌,胰腺,小肠,胃粘膜和幽门括约肌,在其中它负责CCK调节多种消化过程,包括胆囊收缩,胰腺分泌,小肠运输和胃排空。积累的证据清楚地表明,CCK通过CCK-1R信号级联反应调节胆囊和小肠运动,而CCK-1R对小肠运输的作用是调节肠内胆固醇吸收的生理反应。破坏小鼠中的Cck或Cck-1r基因可通过破坏胆囊排空和胆汁胆固醇代谢,以及促进肠道对胆固醇的吸收,显着增加胆固醇胆结石的形成。主要在胆固醇胆结石患者中发现对外源性给予的CCK有反应的胆囊运动功能异常。色素性胆结石患者表现出中等程度的胆囊运动性缺陷,无胆囊炎症和空腹胆囊肿大。尽管未观察到胆结石,但已在几种情况下发现功能失调的胆囊收缩力,例如怀孕,肥胖,糖尿病,腹腔疾病和全胃肠外营养。胆囊特异性CCK-1R选择性激动剂可能会导致一种有效的新颖方法,通过促进胆囊排空来预防胆结石形成,特别是对于孕妇和胆囊运动功能障碍的受试者,例如乳糜泻患者以及全肠外营养患者。

关键词: 胆汁盐,胆汁淤泥,胆固醇结晶,胆囊运动,石质胆汁,胆囊收缩素(CCK)。

[1]
Chandra, R.; Liddle, R.A. Cholecystokinin. Curr. Opin. Endocrinol. Diabetes Obes., 2007, 14(1), 63-67.
[http://dx.doi.org/10.1097/MED.0b013e3280122850] [PMID: 17940422]
[2]
Ivy, A.C.; Oldberg, E. A hormone mechanism for gallbladder contraction and evacuation. Am. J. Physiol., 1928, 86, 599-613.
[http://dx.doi.org/10.1152/ajplegacy.1928.86.3.599]
[3]
Schjoldager, B.T. Role of CCK in gallbladder function. Ann. N. Y. Acad. Sci., 1994, 713, 207-218.
[http://dx.doi.org/10.1111/j.1749-6632.1994.tb44067.x] [PMID: 8185161]
[4]
Spiegelman, B.M.; Flier, J.S. Obesity and the regulation of energy balance. Cell, 2001, 104(4), 531-543.
[http://dx.doi.org/10.1016/S0092-8674(01)00240-9] [PMID: 11239410]
[5]
Badman, M.K.; Flier, J.S. The gut and energy balance: visceral allies in the obesity wars. Science, 2005, 307(5717), 1909-1914.
[http://dx.doi.org/10.1126/science.1109951] [PMID: 15790843]
[6]
Guyenet, S.J.; Schwartz, M.W. Clinical review: Regulation of food intake, energy balance, and body fat mass: implications for the pathogenesis and treatment of obesity. J. Clin. Endocrinol. Metab., 2012, 97(3), 745-755.
[http://dx.doi.org/10.1210/jc.2011-2525] [PMID: 22238401]
[7]
Martínez-González, M.A.; Bes-Rastrollo, M. Nut consumption, weight gain and obesity: epidemiological evidence. Nutr. Metab. Cardiovasc. Dis., 2011, 21(Suppl. 1), S40-S45.
[http://dx.doi.org/10.1016/j.numecd.2010.11.005] [PMID: 21216574]
[8]
Portincasa, P.; Moschetta, A.; Palasciano, G. Cholesterol gallstone disease. Lancet, 2006, 368(9531), 230-239.
[http://dx.doi.org/10.1016/S0140-6736(06)69044-2] [PMID: 16844493]
[9]
Portincasa, P.; Di Ciaula, A.; Baldassarre, G.; Palmieri, V.; Gentile, A.; Cimmino, A.; Palasciano, G. Gallbladder motor function in gallstone patients: sonographic and in vitro studies on the role of gallstones, smooth muscle function and gallbladder wall inflammation. J. Hepatol., 1994, 21(3), 430-440.
[http://dx.doi.org/10.1016/S0168-8278(05)80324-1] [PMID: 7836714]
[10]
Low-Beer, T.S.; Harvey, R.F.; Davies, E.R.; Read, A.F. Abnormalities of serum cholecystokinin and gallbladder emptying in celiac disease. N. Engl. J. Med., 1975, 292(18), 961-963.
[http://dx.doi.org/10.1056/NEJM197505012921807] [PMID: 1117928]
[11]
Maton, P.N.; Selden, A.C.; Fitzpatrick, M.L.; Chadwick, V.S. Defective gallbladder emptying and cholecystokinin release in celiac disease. Reversal by gluten-free diet. Gastroenterology, 1985, 88(2), 391-396.
[http://dx.doi.org/10.1016/0016-5085(85)90497-4] [PMID: 3965328]
[12]
Hopman, W.P.; Rosenbusch, G.; Hectors, M.P.; Jansen, J.B. Effect of predigested fat on intestinal stimulation of plasma cholecystokinin and gall bladder motility in coeliac disease. Gut, 1995, 36(1), 17-21.
[http://dx.doi.org/10.1136/gut.36.1.17] [PMID: 7890230]
[13]
Fraquelli, M.; Bardella, M.T.; Peracchi, M.; Cesana, B.M.; Bianchi, P.A.; Conte, D. Gallbladder emptying and somatostatin and cholecystokinin plasma levels in celiac disease. Am. J. Gastroenterol., 1999, 94(7), 1866-1870.
[http://dx.doi.org/10.1111/j.1572-0241.1999.01221.x] [PMID: 10406250]
[14]
Brown, A.M.; Bradshaw, M.J.; Richardson, R.; Wheeler, J.G.; Harvey, R.F. Pathogenesis of the impaired gall bladder contraction of coeliac disease. Gut, 1987, 28(11), 1426-1432.
[http://dx.doi.org/10.1136/gut.28.11.1426] [PMID: 3428667]
[15]
Sjölund, K.; Alumets, J.; Berg, N.O.; Håkanson, R.; Sundler, F. Duodenal endocrine cells in adult coeliac disease. Gut, 1979, 20(7), 547-552.
[http://dx.doi.org/10.1136/gut.20.7.547] [PMID: 385455]
[16]
Low-Beer, T.S.; Heaton, K.W.; Heaton, S.T.; Read, A.E. Gallbladder inertia and sluggish enterohepatic circulation of bile-salts in coeliac disease. Lancet, 1971, 1(7707), 991-994.
[http://dx.doi.org/10.1016/S0140-6736(71)91387-0] [PMID: 4102454]
[17]
Portincasa, P.; Di Ciaula, A.; Wang, H.H.; Palasciano, G.; van Erpecum, K.J.; Moschetta, A.; Wang, D.Q. Coordinate regulation of gallbladder motor function in the gut-liver axis. Hepatology, 2008, 47(6), 2112-2126.
[http://dx.doi.org/10.1002/hep.22204] [PMID: 18506897]
[18]
Ivy, A.C.; Oldberg, E. A hormone mechanism for gallbladder contraction and evacuation. Am. J. Physiol., 1928, 86, 559-613.
[http://dx.doi.org/10.1152/ajplegacy.1928.86.3.599]
[19]
Liddle, R.A.; Goldfine, I.D.; Rosen, M.S.; Taplitz, R.A.; Williams, J.A. Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction. J. Clin. Invest., 1985, 75(4), 1144-1152.
[http://dx.doi.org/10.1172/JCI111809] [PMID: 2580857]
[20]
Wank, S.A.; Harkins, R.; Jensen, R.T.; Shapira, H.; de Weerth, A.; Slattery, T. Purification, molecular cloning, and functional expression of the cholecystokinin receptor from rat pancreas. Proc. Natl. Acad. Sci. USA, 1992, 89(7), 3125-3129.
[http://dx.doi.org/10.1073/pnas.89.7.3125] [PMID: 1313582]
[21]
Kopin, A.S.; Lee, Y.M.; McBride, E.W.; Miller, L.J.; Lu, M.; Lin, H.Y.; Kolakowski, L.F. Jr.; Beinborn, M. Expression cloning and characterization of the canine parietal cell gastrin receptor. Proc. Natl. Acad. Sci. USA, 1992, 89(8), 3605-3609.
[http://dx.doi.org/10.1073/pnas.89.8.3605] [PMID: 1373504]
[22]
Liddle, R.A. Gastrointestinal hormones and neurotransmitters. In: Sleisenger and Fordtran’s gastrointestinal and liver disease.Edited by: Feldman, M.; Friedman, L.S.; Brandt, L. Philadelphia: Elsevier Saunders. 2010, 3-19.
[http://dx.doi.org/10.1016/B978-1-4160-6189-2.00001-9]
[23]
Martínez, M.A.; Lajas, A.I.; Yago, M.D.; Redondo, P.C.; Granados, M.P.; González, A.; Rosado, J.A.; Martínez-Victoria, E.; Mañas, M.; Pariente, J.A. Dietary virgin olive oil enhances secretagogue-evoked calcium signaling in rat pancreatic acinar cells. Nutrition, 2004, 20(6), 536-541.
[http://dx.doi.org/10.1016/j.nut.2004.03.018] [PMID: 15165616]
[24]
Liddle, R.A. Regulation of cholecystokinin secretion by intraluminal releasing factors. Am. J. Physiol., 1995, 269(3 Pt 1), G319-G327.
[PMID: 7573441]
[25]
Wang, Y.; Chandra, R.; Samsa, L.A.; Gooch, B.; Fee, B.E.; Cook, J.M.; Vigna, S.R.; Grant, A.O.; Liddle, R.A. Amino acids stimulate cholecystokinin release through the Ca2+-sensing receptor. Am. J. Physiol. Gastrointest. Liver Physiol., 2011, 300(4), G528-G537.
[http://dx.doi.org/10.1152/ajpgi.00387.2010] [PMID: 21183662]
[26]
Wang, Y.; Prpic, V.; Green, G.M.; Reeve, J.R., Jr; Liddle, R.A. Luminal CCK-releasing factor stimulates CCK release from human intestinal endocrine and STC-1 cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2002, 282(1), G16-G22.
[http://dx.doi.org/10.1152/ajpgi.2002.282.1.G16] [PMID: 11751153]
[27]
Ohta, H.; Guan, D.; Tawil, T.; Liddle, R.A.; Green, G.M. Regulation of plasma cholecystokinin levels by bile and bile acids in the rat. Gastroenterology, 1990, 99(3), 819-825.
[http://dx.doi.org/10.1016/0016-5085(90)90974-6] [PMID: 2379784]
[28]
Maton, P.N.; Selden, A.C.; Chadwick, V.S. Differential distribution of molecular forms of cholecystokinin in human and porcine small intestinal mucosa. Regul. Pept., 1984, 8(1), 9-19.
[http://dx.doi.org/10.1016/0167-0115(84)90024-7] [PMID: 6718767]
[29]
Noble, F.; Roques, B.P. CCK-B receptor: chemistry, molecular biology, biochemistry and pharmacology. Prog. Neurobiol., 1999, 58(4), 349-379.
[http://dx.doi.org/10.1016/S0301-0082(98)00090-2] [PMID: 10368033]
[30]
Maton, P.N.; Selden, A.C.; FitzPatrick, M.L.; Chadwick, V.S. Infusion of cholecystokinin octapeptide in man: relation between plasma cholecystokinin concentrations and gallbladder emptying rates. Eur. J. Clin. Invest., 1984, 14(1), 37-41.
[http://dx.doi.org/10.1111/j.1365-2362.1984.tb00701.x] [PMID: 6321196]
[31]
Rehfeld, J.F.; Friis-Hansen, L.; Goetze, J.P.; Hansen, T.V. The biology of cholecystokinin and gastrin peptides. Curr. Top. Med. Chem., 2007, 7(12), 1154-1165.
[http://dx.doi.org/10.2174/156802607780960483] [PMID: 17584137]
[32]
Rehfeld, J.F.; Larsson, L.I.; Goltermann, N.R.; Schwartz, T.W.; Holst, J.J.; Jensen, S.L.; Morley, J.S. Neural regulation of pancreatic hormone secretion by the C-terminal tetrapeptide of CCK. Nature, 1980, 284(5751), 33-38.
[http://dx.doi.org/10.1038/284033a0] [PMID: 6101907]
[33]
Wang, D.Q.; Neuschwander-Tetri, B.A.; Portincasa, P. The Biliary System., 2012.
[http://dx.doi.org/10.4199/C00051ED1V01Y201202ISP033]
[34]
Meilstrup, J.W.; Hopper, K.D.; Thieme, G.A. Imaging of gallbladder variants. AJR Am. J. Roentgenol., 1991, 157(6), 1205-1208.
[http://dx.doi.org/10.2214/ajr.157.6.1950867] [PMID: 1950867]
[35]
Carey, M.C.; Hernell, O. Digestion and absorption of fat. Semin. Gastrointest. Dis., 1992, 3, 189-208.
[36]
Hofmann, A.F.; Hagey, L.R. Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell. Mol. Life Sci., 2008, 65(16), 2461-2483.
[http://dx.doi.org/10.1007/s00018-008-7568-6] [PMID: 18488143]
[37]
Hofmann, A.F. Bile Acids and the Enterohepatic Circulation. In: The Liver: Biology and Pathobiology; Irwin M. Arias , Ed.; John Wiley & Sons, Ltd., 2009; pp. 290-304.
[http://dx.doi.org/10.1002/9780470747919.ch20]
[38]
Hay, D.W.; Carey, M.C. Chemical species of lipids in bile. Hepatology, 1990, 12(3 Pt 2), 6S-14S.
[PMID: 2210659]
[39]
Wang, D.Q. Regulation of intestinal cholesterol absorption. Annu. Rev. Physiol., 2007, 69, 221-248.
[http://dx.doi.org/10.1146/annurev.physiol.69.031905.160725] [PMID: 17002594]
[40]
Chandra, R.; Liddle, R.A. Recent advances in pancreatic endocrine and exocrine secretion. Curr. Opin. Gastroenterol., 2011, 27(5), 439-443.
[http://dx.doi.org/10.1097/MOG.0b013e328349e2e1] [PMID: 21778879]
[41]
Chen, D.; Nylander, A.G.; Rehfeld, J.F.; Axelson, J.; Ihse, I.; Håkanson, R. Does vagotomy affect the growth of the pancreas in the rat? Scand. J. Gastroenterol., 1992, 27(7), 606-608.
[http://dx.doi.org/10.3109/00365529209000126] [PMID: 1641588]
[42]
Chu, M.; Borch, K.; Lilja, I.; Blomqvist, L.; Rehfeld, J.F.; Ihse, I. Endogenous hypercholecystokininemia model in the hamster: trophic effect on the exocrine pancreas. Pancreas, 1992, 7(2), 220-225.
[http://dx.doi.org/10.1097/00006676-199203000-00014] [PMID: 1553371]
[43]
Shetzline, M.A.; Liddle, R.A. Neurohumoral control of the exocrine pancreas. Curr. Opin. Gastroenterol., 1999, 15(5), 380-384.
[http://dx.doi.org/10.1097/00001574-199909000-00002] [PMID: 17023977]
[44]
Wang, H.H.; Liu, M.; Portincasa, P. Lack of endogenous cholecystokinin promotes cholelithogenesis in mice. Neurogastroenterol. Motil., 2015.
[PMID: 26604077]
[45]
Wang, D.Q.; Schmitz, F.; Kopin, A.S.; Carey, M.C. Targeted disruption of the murine cholecystokinin-1 receptor promotes intestinal cholesterol absorption and susceptibility to cholesterol cholelithiasis. J. Clin. Invest., 2004, 114(4), 521-528.
[http://dx.doi.org/10.1172/JCI16801] [PMID: 15314689]
[46]
Wang, H.H.; Portincasa, P.; Wang, D.Q. The cholecystokinin-1 receptor antagonist devazepide increases cholesterol cholelithogenesis in mice. Eur. J. Clin. Invest., 2016, 46(2), 158-169.
[http://dx.doi.org/10.1111/eci.12580] [PMID: 26683129]
[47]
Behar, J.; Lee, K.Y.; Thompson, W.R.; Biancani, P. Gallbladder contraction in patients with pigment and cholesterol stones. Gastroenterology, 1989, 97(6), 1479-1484.
[http://dx.doi.org/10.1016/0016-5085(89)90392-2] [PMID: 2583414]
[48]
Pomeranz, I.S.; Shaffer, E.A. Abnormal gallbladder emptying in a subgroup of patients with gallstones. Gastroenterology, 1985, 88(3), 787-791.
[http://dx.doi.org/10.1016/0016-5085(85)90152-0] [PMID: 3967810]
[49]
Portincasa, P.; Di Ciaula, A.; Vendemiale, G.; Palmieri, V.; Moschetta, A.; Vanberge-Henegouwen, G.P.; Palasciano, G. Gallbladder motility and cholesterol crystallization in bile from patients with pigment and cholesterol gallstones. Eur. J. Clin. Invest., 2000, 30(4), 317-324.
[http://dx.doi.org/10.1046/j.1365-2362.2000.00639.x] [PMID: 10759880]
[50]
Wang, H.H.; Portincasa, P.; Wang, D.Q. Molecular pathophysiology and physical chemistry of cholesterol gallstones. Front. Biosci., 2008, 13, 401-423.
[http://dx.doi.org/10.2741/2688] [PMID: 17981556]
[51]
Stampfer, M.J.; Maclure, K.M.; Colditz, G.A.; Manson, J.E.; Willett, W.C. Risk of symptomatic gallstones in women with severe obesity. Am. J. Clin. Nutr., 1992, 55(3), 652-658.
[http://dx.doi.org/10.1093/ajcn/55.3.652] [PMID: 1550039]
[52]
Kodama, H.; Kono, S.; Todoroki, I.; Honjo, S.; Sakurai, Y.; Wakabayashi, K.; Nishiwaki, M.; Hamada, H.; Nishikawa, H.; Koga, H.; Ogawa, S.; Nakagawa, K. Gallstone disease risk in relation to body mass index and waist-to-hip ratio in Japanese men. Int. J. Obes. Relat. Metab. Disord., 1999, 23(2), 211-216.
[http://dx.doi.org/10.1038/sj.ijo.0800781] [PMID: 10078858]
[53]
Vezina, W.C.; Paradis, R.L.; Grace, D.M.; Zimmer, R.A.; Lamont, D.D.; Rycroft, K.M.; King, M.E.; Hutton, L.C.; Chey, W.Y. Increased volume and decreased emptying of the gallbladder in large (morbidly obese, tall normal, and muscular normal) people. Gastroenterology, 1990, 98(4), 1000-1007.
[http://dx.doi.org/10.1016/0016-5085(90)90025-V] [PMID: 2179026]
[54]
Haber, G.B.; Heaton, K.W. Lipid composition of bile in diabetics and obesity-matched controls. Gut, 1979, 20(6), 518-522.
[http://dx.doi.org/10.1136/gut.20.6.518] [PMID: 468079]
[55]
Pitt, H.A.; King, W., III; Mann, L.L.; Roslyn, J.J.; Berquist, W.E.; Ament, M.E.; DenBesten, L. Increased risk of cholelithiasis with prolonged total parenteral nutrition. Am. J. Surg., 1983, 145(1), 106-112.
[http://dx.doi.org/10.1016/0002-9610(83)90175-7] [PMID: 6401411]
[56]
Roslyn, J.J.; Pitt, H.A.; Mann, L.L.; Ament, M.E.; DenBesten, L. Gallbladder disease in patients on long-term parenteral nutrition. Gastroenterology, 1983, 84(1), 148-154.
[PMID: 6401182]
[57]
Ko, C.W.; Beresford, S.A.; Schulte, S.J.; Matsumoto, A.M.; Lee, S.P. Incidence, natural history, and risk factors for biliary sludge and stones during pregnancy. Hepatology, 2005, 41(2), 359-365.
[http://dx.doi.org/10.1002/hep.20534] [PMID: 15660385]
[58]
LaMorte, W.W.; Schoetz, D.J., Jr; Birkett, D.H.; Williams, L.F., Jr The role of the gallbladder in the pathogenesis of cholesterol gallstones. Gastroenterology, 1979, 77(3), 580-592.
[http://dx.doi.org/10.1016/0016-5085(79)90027-1] [PMID: 456853]
[59]
Spengler, U.; Sackmann, M.; Sauerbruch, T.; Holl, J.; Paumgartner, G. Gallbladder motility before and after extracorporeal shock-wave lithotripsy. Gastroenterology, 1989, 96(3), 860-863.
[http://dx.doi.org/10.1016/0016-5085(89)90913-X] [PMID: 2914646]
[60]
Schneider, H.; Sänger, P.; Hanisch, E. In vitro effects of cholecystokinin fragments on human gallbladders. Evidence for an altered CCK-receptor structure in a subgroup of patients with gallstones. J. Hepatol., 1997, 26(5), 1063-1068.
[http://dx.doi.org/10.1016/S0168-8278(97)80115-8] [PMID: 9186837]
[61]
Yu, P.; Chen, Q.; Harnett, K.M.; Amaral, J.; Biancani, P.; Behar, J. Direct G protein activation reverses impaired CCK signaling in human gallbladders with cholesterol stones. Am. J. Physiol., 1995, 269(5 Pt 1), G659-G665.
[http://dx.doi.org/10.1152/ajpgi.1995.269.5.G659] [PMID: 7491956]
[62]
Yu, P.; Chen, Q.; Xiao, Z.; Harnett, K.; Biancani, P.; Behar, J. Signal transduction pathways mediating CCK-induced gallbladder muscle contraction. Am. J. Physiol., 1998, 275(2), G203-G211.
[http://dx.doi.org/[DOI: 10.1152/ajpgi.1998.275.2.G203] [PMID: 9688646]
[63]
Yu, P.; De Petris, G.; Biancani, P.; Amaral, J.; Behar, J. Cholecystokinin-coupled intracellular signaling in human gallbladder muscle. Gastroenterology, 1994, 106(3), 763-770.
[http://dx.doi.org/10.1016/0016-5085(94)90713-7] [PMID: 8119547]
[64]
Yu, P.; Harnett, K.M.; Biancani, P.; De Petris, G.; Behar, J. Interaction between signal transduction pathways contributing to gallbladder tonic contraction. Am. J. Physiol., 1993, 265(6 Pt 1), G1082-G1089.
[http://dx.doi.org/10.1152/ajpgi.1993.265.6.G1082] [PMID: 8279559]
[65]
Wang, H.H.; Portincasa, P.; Liu, M.; Tso, P.; Samuelson, L.C.; Wang, D.Q. Effect of gallbladder hypomotility on cholesterol crystallization and growth in CCK-deficient mice. Biochim. Biophys. Acta, 2010, 1801(2), 138-146.
[http://dx.doi.org/10.1016/j.bbalip.2009.10.003] [PMID: 19836465]
[66]
Marks, J.W.; Bonorris, G.G.; Albers, G.; Schoenfield, L.J. The sequence of biliary events preceding the formation of gallstones in humans. Gastroenterology, 1992, 103(2), 566-570.
[http://dx.doi.org/10.1016/0016-5085(92)90848-S] [PMID: 1634075]
[67]
Shiffman, M.L.; Sugerman, H.J.; Kellum, J.M.; Brewer, W.H.; Moore, E.W. Gallstone formation after rapid weight loss: a prospective study in patients undergoing gastric bypass surgery for treatment of morbid obesity. Am. J. Gastroenterol., 1991, 86(8), 1000-1005.
[PMID: 1858735]
[68]
Broomfield, P.H.; Chopra, R.; Sheinbaum, R.C.; Bonorris, G.G.; Silverman, A.; Schoenfield, L.J.; Marks, J.W. Effects of ursodeoxycholic acid and aspirin on the formation of lithogenic bile and gallstones during loss of weight. N. Engl. J. Med., 1988, 319(24), 1567-1572.
[http://dx.doi.org/10.1056/NEJM198812153192403] [PMID: 3200265]
[69]
Wang, D.Q.; Paigen, B.; Carey, M.C. Phenotypic characterization of Lith genes that determine susceptibility to cholesterol cholelithiasis in inbred mice: physical-chemistry of gallbladder bile. J. Lipid Res., 1997, 38(7), 1395-1411.
[PMID: 9254065]
[70]
Lee, S.P.; LaMont, J.T.; Carey, M.C. Role of gallbladder mucus hypersecretion in the evolution of cholesterol gallstones. J. Clin. Invest., 1981, 67(6), 1712-1723.
[http://dx.doi.org/10.1172/JCI110209] [PMID: 7240416]
[71]
Holzbach, R.T.; Corbusier, C.; Marsh, M.; Naito, H.K. The process of cholesterol cholelithiasis induced by diet in the prairie dog: a physicochemical characterization. J. Lab. Clin. Med., 1976, 87(6), 987-998.
[PMID: 180214]
[72]
Mazer, N.A.; Carey, M.C. Quasi-elastic light-scattering studies of aqueous biliary lipid systems. Cholesterol solubilization and precipitation in model bile solutions. Biochemistry, 1983, 22(2), 426-442.
[http://dx.doi.org/10.1021/bi00271a029] [PMID: 6824637]
[73]
Halpern, Z.; Dudley, M.A.; Lynn, M.P.; Nader, J.M.; Breuer, A.C.; Holzbach, R.T. Vesicle aggregation in model systems of supersaturated bile: relation to crystal nucleation and lipid composition of the vesicular phase. J. Lipid Res., 1986, 27(3), 295-306.
[PMID: 3734627]
[74]
Halpern, Z.; Dudley, M.A.; Kibe, A.; Lynn, M.P.; Breuer, A.C.; Holzbach, R.T. Rapid vesicle formation and aggregation in abnormal human biles. A time-lapse video-enhanced contrast microscopy study. Gastroenterology, 1986, 90(4), 875-885.
[http://dx.doi.org/10.1016/0016-5085(86)90863-2] [PMID: 3949117]
[75]
Konikoff, F.M.; Chung, D.S.; Donovan, J.M.; Small, D.M.; Carey, M.C. Filamentous, helical, and tubular microstructures during cholesterol crystallization from bile. Evidence that cholesterol does not nucleate classic monohydrate plates. J. Clin. Invest., 1992, 90(3), 1155-1160.
[http://dx.doi.org/10.1172/JCI115935] [PMID: 1522223]
[76]
Wang, D.Q.; Carey, M.C. Complete mapping of crystallization pathways during cholesterol precipitation from model bile: influence of physical-chemical variables of pathophysiologic relevance and identification of a stable liquid crystalline state in cold, dilute and hydrophilic bile salt-containing systems. J. Lipid Res., 1996, 37(3), 606-630.
[PMID: 8728323]
[77]
Wang, D.Q.; Carey, M.C. Characterization of crystallization pathways during cholesterol precipitation from human gallbladder biles: identical pathways to corresponding model biles with three predominating sequences. J. Lipid Res., 1996, 37(12), 2539-2549.
[PMID: 9017506]
[78]
Neiderhiser, D.H.; Harmon, C.K.; Roth, H.P. Absorption of cholesterol by the gallbladder. J. Lipid Res., 1976, 17(2), 117-124.
[PMID: 775005]
[79]
Ginanni Corradini, S.; Ripani, C.; Della Guardia, P.; Giovannelli, L.; Elisei, W.; Cantafora, A.; Codacci Pisanelli, M.; Tebala, G.D.; Nuzzo, G.; Corsi, A.; Attili, A.F.; Capocaccia, L.; Ziparo, V. The human gallbladder increases cholesterol solubility in bile by differential lipid absorption: a study using a new in vitro model of isolated intra-arterially perfused gallbladder. Hepatology, 1998, 28(2), 314-322.
[http://dx.doi.org/10.1002/hep.510280205] [PMID: 9695992]
[80]
Lee, S.P.; Nicholls, J.F. Nature and composition of biliary sludge. Gastroenterology, 1986, 90(3), 677-686.
[http://dx.doi.org/10.1016/0016-5085(86)91123-6] [PMID: 3943697]
[81]
Lee, S.P.; Maher, K.; Nicholls, J.F. Origin and fate of biliary sludge. Gastroenterology, 1988, 94(1), 170-176.
[http://dx.doi.org/10.1016/0016-5085(88)90626-9] [PMID: 3275565]
[82]
Levy, P.F.; Smith, B.F.; LaMont, J.T. Human gallbladder mucin accelerates nucleation of cholesterol in artificial bile. Gastroenterology, 1984, 87(2), 270-275.
[http://dx.doi.org/10.1016/0016-5085(84)90700-5] [PMID: 6428962]
[83]
Afdhal, N.H.; Niu, N.; Gantz, D.; Small, D.M.; Smith, B.F. Bovine gallbladder mucin accelerates cholesterol monohydrate crystal growth in model bile. Gastroenterology, 1993, 104(5), 1515-1523.
[http://dx.doi.org/10.1016/0016-5085(93)90364-I] [PMID: 8482463]
[84]
Pemsingh, R.S.; MacPherson, B.R.; Scott, G.W. Mucus hypersecretion in the gallbladder epithelium of ground squirrels fed a lithogenic diet for the induction of cholesterol gallstones. Hepatology, 1987, 7(6), 1267-1271.
[http://dx.doi.org/10.1002/hep.1840070615] [PMID: 3679091]
[85]
Womack, N.A. The development of gallstones. Surg. Gynecol. Obstet., 1971, 133(6), 937-945.
[PMID: 5117390]
[86]
Pearson, J.P.; Foster, S.N. Mucus glycoprotein content of human cholesterol gallstones. Digestion, 1987, 36(3), 132-140.
[http://dx.doi.org/10.1159/000199410] [PMID: 3596075]
[87]
Toor, E.W.; Evans, D.F.; Cussler, E.L. Cholesterol monohydrate growth in model bile solutions. Proc. Natl. Acad. Sci. USA, 1978, 75(12), 6230-6234.
[http://dx.doi.org/10.1073/pnas.75.12.6230] [PMID: 282639]
[88]
Portincasa, P.; Venneman, N.G.; Moschetta, A.; van den Berg, A.; Palasciano, G.; vanBerge-Henegouwen, G.P.; van Erpecum, K.J. Quantitation of cholesterol crystallization from supersaturated model bile. J. Lipid Res., 2002, 43(4), 604-610.
[PMID: 11907143]
[89]
Sitzmann, J.V.; Pitt, H.A.; Steinborn, P.A.; Pasha, Z.R.; Sanders, R.C. Cholecystokinin prevents parenteral nutrition induced biliary sludge in humans. Surg. Gynecol. Obstet., 1990, 170(1), 25-31.
[PMID: 2104681]
[90]
Kopin, A.S.; Mathes, W.F.; McBride, E.W.; Nguyen, M.; Al-Haider, W.; Schmitz, F.; Bonner-Weir, S.; Kanarek, R.; Beinborn, M. The cholecystokinin-A receptor mediates inhibition of food intake yet is not essential for the maintenance of body weight. J. Clin. Invest., 1999, 103(3), 383-391.
[http://dx.doi.org/10.1172/JCI4901] [PMID: 9927499]
[91]
Wang, D.Q.; Lammert, F.; Cohen, D.E.; Paigen, B.; Carey, M.C. Cholic acid aids absorption, biliary secretion, and phase transitions of cholesterol in murine cholelithogenesis. Am. J. Physiol., 1999, 276(3), G751-G760.
[PMID: 10070053]
[92]
Wang, D.Q.; Cohen, D.E. Absorption and Excretion of Cholesterol and Other Sterols. In: Lipidology in the Treatment and Prevention of Cardiovascular Disease (Clinical Lipidology: A Companion to Braunwald’s Heart Disease); Ballantyne, C.M., Ed.; Elsevier Inc.: Philadelphia, 2008; pp. 26-44.
[http://dx.doi.org/10.1016/B978-141605469-6.50007-X]
[93]
Wang, T.Y.; Liu, M.; Portincasa, P.; Wang, D.Q. New insights into the molecular mechanism of intestinal fatty acid absorption. Eur. J. Clin. Invest., 2013, 43(11), 1203-1223.
[http://dx.doi.org/10.1111/eci.12161] [PMID: 24102389]
[94]
Ponz de Leon, M.; Iori, R.; Barbolini, G.; Pompei, G.; Zaniol, P.; Carulli, N. Influence of small-bowel transit time on dietary cholesterol absorption in human beings. N. Engl. J. Med., 1982, 307(2), 102-103.
[http://dx.doi.org/10.1056/NEJM198207083070207] [PMID: 7088036]
[95]
Wang, D.Q.; Carey, M.C. Measurement of intestinal cholesterol absorption by plasma and fecal dual-isotope ratio, mass balance, and lymph fistula methods in the mouse: an analysis of direct versus indirect methodologies. J. Lipid Res., 2003, 44(5), 1042-1059.
[http://dx.doi.org/10.1194/jlr.D200041-JLR200] [PMID: 12588946]
[96]
Wang, D.Q.; Paigen, B.; Carey, M.C. Genetic factors at the enterocyte level account for variations in intestinal cholesterol absorption efficiency among inbred strains of mice. J. Lipid Res., 2001, 42(11), 1820-1830.
[PMID: 11714851]
[97]
Duan, L.P.; Wang, H.H.; Wang, D.Q. Cholesterol absorption is mainly regulated by the jejunal and ileal ATP-binding cassette sterol efflux transporters ABCg5 and ABCg8 in mice. J. Lipid Res., 2004, 45(7), 1312-1323.
[http://dx.doi.org/10.1194/jlr.M400030-JLR200] [PMID: 15102882]
[98]
Wang, D.Q.; Zhang, L.; Wang, H.H. High cholesterol absorption efficiency and rapid biliary secretion of chylomicron remnant cholesterol enhance cholelithogenesis in gallstone-susceptible mice. Biochim. Biophys. Acta, 2005, 1733(1), 90-99.
[http://dx.doi.org/10.1016/j.bbalip.2004.12.005] [PMID: 15749059]
[99]
Heaton, K.W.; Emmett, P.M.; Symes, C.L.; Braddon, F.E. An explanation for gallstones in normal-weight women: slow intestinal transit. Lancet, 1993, 341(8836), 8-10.
[http://dx.doi.org/10.1016/0140-6736(93)92479-D] [PMID: 8093323]
[100]
Marcus, S.N.; Heaton, K.W. Intestinal transit, deoxycholic acid and the cholesterol saturation of bile-three inter-related factors. Gut, 1986, 27(5), 550-558.
[http://dx.doi.org/10.1136/gut.27.5.550] [PMID: 3699564]
[101]
Shoda, J.; He, B.F.; Tanaka, N.; Matsuzaki, Y.; Osuga, T.; Yamamori, S.; Miyazaki, H.; Sjövall, J. Increase of deoxycholate in supersaturated bile of patients with cholesterol gallstone disease and its correlation with de novo syntheses of cholesterol and bile acids in liver, gallbladder emptying, and small intestinal transit. Hepatology, 1995, 21(5), 1291-1302.
[http://dx.doi.org/10.1016/0270-9139(95)90050-0] [PMID: 7737634]
[102]
Thomas, L.A.; Veysey, M.J.; Murphy, G.M.; Russell-Jones, D.; French, G.L.; Wass, J.A.; Dowling, R.H. Octreotide induced prolongation of colonic transit increases faecal anaerobic bacteria, bile acid metabolising enzymes, and serum deoxycholic acid in patients with acromegaly. Gut, 2005, 54(5), 630-635.
[http://dx.doi.org/10.1136/gut.2003.028431] [PMID: 15831907]
[103]
Azzaroli, F.; Mazzella, G.; Mazzeo, C.; Simoni, P.; Festi, D.; Colecchia, A.; Montagnani, M.; Martino, C.; Villanova, N.; Roda, A.; Roda, E. Sluggish small bowel motility is involved in determining increased biliary deoxycholic acid in cholesterol gallstone patients. Am. J. Gastroenterol., 1999, 94(9), 2453-2459.
[http://dx.doi.org/10.1111/j.1572-0241.1999.01375.x] [PMID: 10484008]
[104]
Pereira, S.P.; Bain, I.M.; Kumar, D.; Dowling, R.H. Bile composition in inflammatory bowel disease: ileal disease and colectomy, but not colitis, induce lithogenic bile. Aliment. Pharmacol. Ther., 2003, 17(7), 923-933.
[http://dx.doi.org/10.1046/j.1365-2036.2003.01529.x] [PMID: 12656695]
[105]
Low-Beer, T.S.; Nutter, S. Colonic bacterial activity, biliary cholesterol saturation, and pathogenesis of gallstones. Lancet, 1978, 2(8099), 1063-1065.
[http://dx.doi.org/10.1016/S0140-6736(78)91800-7] [PMID: 82084]
[106]
Thomas, L.A.; Veysey, M.J.; Bathgate, T.; King, A.; French, G.; Smeeton, N.C.; Murphy, G.M.; Dowling, R.H. Mechanism for the transit-induced increase in colonic deoxycholic acid formation in cholesterol cholelithiasis. Gastroenterology, 2000, 119(3), 806-815.
[http://dx.doi.org/10.1053/gast.2000.16495] [PMID: 10982775]
[107]
Wang, D.Q.; Tazuma, S.; Cohen, D.E.; Carey, M.C. Feeding natural hydrophilic bile acids inhibits intestinal cholesterol absorption: studies in the gallstone-susceptible mouse. Am. J. Physiol. Gastrointest. Liver Physiol., 2003, 285(3), G494-G502.
[http://dx.doi.org/10.1152/ajpgi.00156.2003] [PMID: 12748061]
[108]
Chen, Q.; Chitinavis, V.; Xiao, Z.; Yu, P.; Oh, S.; Biancani, P.; Behar, J. Impaired G protein function in gallbladder muscle from progesterone-treated guinea pigs. Am. J. Physiol., 1998, 274(2), G283-G289.
[PMID: 9486181]
[109]
Chen, Q.; Amaral, J.; Biancani, P.; Behar, J. Excess membrane cholesterol alters human gallbladder muscle contractility and membrane fluidity. Gastroenterology, 1999, 116(3), 678-685.
[http://dx.doi.org/10.1016/S0016-5085(99)70190-3] [PMID: 10029627]
[110]
Suzuki, S.; Takiguchi, S.; Sato, N.; Kanai, S.; Kawanami, T.; Yoshida, Y.; Miyasaka, K.; Takata, Y.; Funakoshi, A.; Noda, T. Importance of CCK-A receptor for gallbladder contraction and pancreatic secretion: a study in CCK-A receptor knockout mice. Jpn. J. Physiol., 2001, 51(5), 585-590.
[http://dx.doi.org/10.2170/jjphysiol.51.585] [PMID: 11734079]
[111]
Shaffer, E.A. Abnormalities in gallbladder function in cholesterol gallstone disease: bile and blood, mucosa and muscle--the list lengthens. Gastroenterology, 1992, 102(5), 1808-1812.
[http://dx.doi.org/10.1016/0016-5085(92)91749-T] [PMID: 1568595]
[112]
Wang, D.Q.; Afdhal, N.H. Gallstone Disease. In: Sleisenger and Fordtran’s Gastrointestinal and Liver Disease; Feldman, M.; Friedman, L.S.; Brandt, L., Eds.; Elsevier Inc.: Philadelphia, 2014; pp. 1100-1133.
[113]
Green, P.H.; Cellier, C. Celiac disease. N. Engl. J. Med., 2007, 357(17), 1731-1743.
[http://dx.doi.org/10.1056/NEJMra071600] [PMID: 17960014]
[114]
Calam, J.; Ellis, A.; Dockray, G.J. Identification and measurement of molecular variants of cholecystokinin in duodenal mucosa and plasma. Diminished concentrations in patients with celiac disease. J. Clin. Invest., 1982, 69(1), 218-225.
[http://dx.doi.org/10.1172/JCI110433] [PMID: 7033291]
[115]
Masclee, A.A.; Jansen, J.B.; Driessen, W.M.; Geuskens, L.M.; Lamers, C.B. Gallbladder sensitivity to cholecystokinin in coeliac disease. Correlation of gallbladder contraction with plasma cholecystokinin-like immunoreactivity during infusion of cerulein. Scand. J. Gastroenterol., 1991, 26(12), 1279-1284.
[http://dx.doi.org/10.3109/00365529108998625] [PMID: 1763298]
[116]
Kelly, C.P. Celiac Disease. In: Sleisenger and Fordtran’s Gastrointestinal and Liver Disease; Feldman, M.; Friedman, L.S.; Brandt, L.J., Eds.; Elsevier Inc., 2014; pp. 1849-1872.
[117]
Miller, L.J.; Holicky, E.L.; Ulrich, C.D.; Wieben, E.D. Abnormal processing of the human cholecystokinin receptor gene in association with gallstones and obesity. Gastroenterology, 1995, 109(4), 1375-1380.
[http://dx.doi.org/10.1016/0016-5085(95)90601-0] [PMID: 7557108]
[118]
Nardone, G.; Ferber, I.A.; Miller, L.J. The integrity of the cholecystokinin receptor gene in gallbladder disease and obesity. Hepatology, 1995, 22(6), 1751-1753.
[PMID: 7489984]
[119]
Lammert, F.; Gurusamy, K.; Ko, C.W.; Miquel, J.F.; Méndez-Sánchez, N.; Portincasa, P.; van Erpecum, K.J.; van Laarhoven, C.J.; Wang, D.Q. Gallstones. Nat. Rev. Dis. Primers, 2016, 2, 16024.
[http://dx.doi.org/10.1038/nrdp.2016.24] [PMID: 27121416]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy