[1]
Khan GA, Declerck M, Sorin C, Hartmann C, Crespi M, Lelandais-Brière C. MicroRNAs as regulators of root development and architecture. Plant Mol Biol 2011; 77: 47-58.
[2]
Peng H, Chun J, Ai T, et al. MicroRNA profiles and their control of male gametophyte development in rice. Plant Mol Biol 2012; 80: 85-102.
[3]
Arenas-Huertero C, Perez B, Rabanal F, et al. Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol Biol 2009; 70: 385-401.
[4]
Li B, Duan H, Li J, Deng XW, Yin W, Xia X. Global identification of miRNAs and targets in Populus euphratica under salt stress. Plant Mol Biol 2013; 81: 525-39.
[5]
Bonnet E, Van De Peer Y, Rouze P. The small RNA word of plants. New Phytol 2006; 171: 451-68.
[6]
Susi P, Hohkuri M, Wahlroos T, Kilby NJ. Characteristics of RNA silencing in plants: similarities and differences across kingdoms. Plant Mol Biol 2004; 54: 157-74.
[7]
Jones-Rhoades MW, Bartel PD. Computational identification of plant miRNA and their targets, including a stress induced miRNA. Mol Cell 2004; 14: 787-99.
[8]
Aukerman MJ, Sakai H. Regulation of flowering time and floral organ by a microRNA and its APETALA2-like target genes. Plant Cell 2003; 15(11): 2730-41.
[9]
Xie Z, Allen E, Fahlgren N, et al. Expression of Arabidopsis miRNA genes. Plant Physiol 2005; 138: 2145-54.
[10]
Zhang BH, Pan XP, Wang QL, Cobb GP, Anderson TA. Identification and characterization of new plant microRNAs using EST analysis. Cell Res 2005; 15: 336-60.
[11]
Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell 2009; 136: 669-87.
[12]
Vasquez F, Vaucheret H, Rajagopalan R, et al. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNA. Mol Cell 2004; 16(1): 69-79.
[13]
Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediated post-translational gene silencing in Drosophila cells. Nature 2000; 404: 293-6.
[14]
Park W, Li J, Song R, Messing J, Chen X. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in miRNA metabolism in Arabidopsis. Curr Biol 2002; 12(17): 1484-95.
[15]
Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. MicroRNAs in plants. Genes Dev 2002; 16(13): 1616-26.
[16]
Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. Prediction of plant microRNA targets. Cell 2002; 110(4): 513-20.
[17]
Boutet S, Vasquez F, Liu J, et al. Arabidopsis HEN1: a genetic link between endogenous miRNA controlling development and siRNA controlling transgene silencing and virus resistance. Curr Biol 2003; 13: 843-8.
[18]
Chen X. MicroRNA biogenesis and Function in plants. FEBS Lett 2005; 579: 5923-31.
[19]
Du T, Zamore PD. MicroPrimer: the biogenesis and function of microRNA. Development 2005; 132(21): 4645-52.
[20]
Yu B, Yang Z, Li J, et al. Methylation as a crucial step in plant microRNA biogenesis. Science 2005; 307: 932-5.
[21]
Kurihara Y, Takashi Y, Watanabe Y. The interaction between DCL1 and HYL1 is important for efficient and précis processing of pri-miRNA in plant microRNA biogenesis. RNA 2006; 12(2): 206-12.
[22]
Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, et al. Widespread translational inhibition by plant miRNAs and siRNAs. Science 2007; 320: 1185-90.
[23]
Ben Amor B, Wirth S, Merchan F, et al. Novel long non-protein coding RNAs involved in Arabidopsis and stress response. Genome Res 2009; 19(1): 57-69.
[24]
Dai Y, Zhou X. Computational methods for the identification of microRNA targets. Bioinformatics 2010; 1(2): 29-39.
[25]
Lelandais-Briere C, Sorin C, Declerck M, et al. Small RNA diversity in plants and its impact in development. Curr Genomics 2010; 11: 14-23.
[26]
Sun Y, Shi R, Zhang X, Chiang VL, Sederoff RR. Micro RNAs in trees. Plant Mol Biol 2012; 80: 37-53.
[27]
Eldem V, Okay S, Unver T. Plant microRNAs: new players in functional genomics. Turk J Agric For 2013; 37: 1-21.
[28]
Pashkovisky PP, Ryazansky SS. Biogenesis, evolution and functions of plant microRNAs. Biochemistry (Mosc) 2013; 78(6): 627-37.
[29]
Rogers K, Chen X. Biogenesis, Turnover, and mode of action of plant microRNAs. Plant Cell 2013; 25: 2383-99.
[30]
Brousse C, Liu Q, Beauclair L, Deremetz A, Axtell MJ, Bouché NA. non-canonical plant microRNA target site. Nucl Acids Res 2014; 42(8): 5270-9.
[31]
Liu Q, Wang F, Axtell MJ. Analysis of complementarity requirements for plant microRNA using a Nicotiana benthamiana quantitative transient assay. Plant Cell 2014; 26: 741-53.
[32]
Yang T, Xue L, An L. Functional diversity of miRNA in plants. Plant Sci 2007; 172: 423-32.
[33]
Shabalina SA, Koonin E. Origins and evolution of eukaryotic RNA inference. Trends Ecol Evol 2008; 23(10): 578-87.
[34]
Zhang B, Pan XP, Cannon CH, Cobb GP, Anderson A. Conservation and divergence of plant micro RNA genes. Plant Mol Biol 2006; 46: 243-59.
[35]
Ambros V, Bartel B, Bartel DP, et al. A uniform system for microRNA annotation. RNA 2003; 9(3): 277-9.
[36]
Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281-97.
[37]
Zhang B, Pan X, Wang Q, Cobb GP, Anderson TA. Computational identification of microRNAs and their targets. Comput Biol Chem 2006; 30: 395-407.
[38]
Xie F, Xiao P, Chen D, Xu L, Zhang B. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 2012; 80: 75-84.
[39]
Zhang BH, Pan XP, Cox SB, Anderson TA. Identification of 188 conserved maize microRNAs and their targets. FEBS Lett 2006; 580: 3753-62.
[40]
Hajieghrari B, Farrokhi N, Goliaei B, Kavousi K. Computational identification, characterization and analysis of conserved miRNAs and their targets in Amborella trichopoda. J Data Mining Genomics Proteomics 2015; 6: 168.
[41]
Hajieghrari B, Farrokhi N, Goliaei B, Kavousi K. Identification and characterization of novel miRNAs in Chlamydomonas reinhardtii by computational methods. MicroRNA 2016; 5: 66-77.
[42]
Yin ZJ, Shen FF. Identification and characterization of conserved microRNAs and their target genes in wheat (Triticum aestivum). Genet Mol Res 2010; 9(2): 1186-96.
[43]
Zhang B, Pan X, Cobb GP, Anderson TA. Plant microRNA: a small regulatory molecule with big impact. Dev Biol 2006; 289: 3-16.
[44]
Rensing SA, Lang D, Zimmer AD, et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 2008; 319: 64-9.
[45]
Talmor-Neiman M, Stav R, Frank W, Voss B, Arazi T. Novel microRNAs and intermediates of micro RNA biogenesis from moss. Plant J 2006; 47: 25-37.
[46]
Strotbek C, Krinninger S, Frank W. The moss Physcomitrella patens: methods and tools from cultivation to targeted analysis of gene function. Int J Dev Biol 2013; 57: 553-64.
[47]
Zimmer AD, Lang D, Buchta K, et al. Reannotation and extended community resources for the genome of the non-seed plant Physcomitrella patens provide insights into the evolution of plant gene structures and functions. BMC Genomics 2013; 14: 498-518.
[48]
Floyd SK, Bowman JL. Ancient microRNA target sequences in plants. Nature 2004; 428: 485-6.
[49]
Arazi T, Talmor-Neiman M, Stav R, Riese M, Huijser P, Baulcombe DC. Cloning and characterization of micro-RNAs from moss. Plant J 2005; 43: 837-48.
[50]
Molnár A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC. miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 2007; 447: 1126-9.
[51]
Griffiths-Jones S. The microRNA Registry. Nucl Acids Res 2004; 32: D109-11.
[52]
Griffiths-Jones S, Grocock RJ, Van Dongen S, et al. MiRBase: microRNA sequences, targets and gene nomenclature. Nucl Acids Res 2006; 34: D140-4.
[53]
Griffiths-Jones S, Saini HK, Van Dongen S, Enright AJ. MiRBase: tools for microRNA genomics. Nucl Acids Res 2008; 36: D154-8.
[54]
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215(3): 403-10.
[55]
Zuker M. MFOLD web server for nucleic acid folding and hybridization prediction. Nucl Acids Res 2003; 31: 3406-15.
[56]
Lorenz R, Bernhart SH, Höner zu Siederdissen C, et al. Vienna RNA Package 2.0. Algorithms Mol Biol 2011; 6: 26.
[57]
Zhang Y. miRU: an automated plant miRNA target prediction server. Nucl Acids Res 2005; 33: 701-4.
[58]
Will S, Joshi T, Hofacker IL, Stadler PF, Backofen R. LocARNA-P: Accurate boundary prediction and improved detection of structural RNAs. RNA 2012; 18(5): 900-14.
[59]
Zhang BH, Pan XP, Cox SB, Cobb GP, Anderson TA. Evidence that miRNA are different from other RNAs. Cell Mol Life Sci 2006; 63: 246-54.
[60]
Wang L, Liu H, Li D, Chen H. Identification and characterization of maize microRNA involved in the very early stage of seed germination. BMC Genomics 2011; 12: 154.
[61]
Patanun O, Lertpanyasampatha M, Sojikul P, Viboonjun U, Narangajavana J. Computational identification of Micro RNAs and their targets in Cassava (Manihot esculentus Crantz). Mol Biotechnol 2012; 53: 256-69.
[62]
Han J, Xie H, Kong ML, Sun QP, Li RZ, Pan JB. Computational identification of miRNA and their targets in Phaseolus vulgaris. Genet Mol Res 2014; 13(1): 310-22.
[63]
Wang X, Zang J, Li F, et al. Micro RNA identification based on sequence and structure alignment. Bioinformatics 2005; 21(18): 3610-4.
[64]
Brodersen P, Voinnet O. The diversity of RNA silencing pathways in plants. Trends Genet 2006; 22: 268-80.
[65]
Merchant SS, Prochnik SE, Vallon O, et al. The Chlamydomonas genome reveals the evolution of key animal and plant function. Science 2007; 318: 245-50.
[66]
Gene ontology consorthium. Gene ontology consortium:going forward. Nucl Acids Res 2005; 43(Database issue): D1049-56.
[67]
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, disease and drugs. Nucl Acids Res 2017; 45: D353-61.
[68]
Lu Y, Yang X. Computational identification of novel microRNAs and their targets in Vigna unguiculata. Comp Funct Genomics 2010; 128297.
[69]
Meyersa BC, Axtellb MJ, Bartelc B, et al. Criteria for Annotation of Plant MicroRNAs. Plant Cell 2008; 20(12): 3186-90.
[70]
Ebhardt HA, Fedynak A, Fahlman RP. Naturally occurring variations in sequence length creates microRNA isoforms that differ in Argonaute effector complex specificity. Silence 2010; 1: 12.
[71]
Axtell MJ, Snyder JA, Bartel DP. Common functions for diverse small RNAs of land plants. The Plant Cell 2007; 19: 1750-69.
[72]
Yao Y, Guo G, Ni Z, et al. Cloning and characterization of microRNAs from wheat (Triticum aestivum L). Genome Biol 2007; 8(6): R96.
[73]
Kwak PB, Wang QQ, Chen XS, Qiu CX, Yang ZM. Enrichment of a set of microRNAs during the cotton fiber development. BMC Genomics 2009; 10: 457-68.
[74]
Lenz D, May P, Walther D. Comparative analysis of miRNAs and their targets across four plant species. BMC Res Notes 2011; 4: 483-90.
[75]
Akter A, Islam MM, Mondal SI, et al. Computational identification of miRNA and targets from expressed sequence tags of coffee (Coffea arabica). Saudi J Biol Sci 2014; 21(1): 3-12.
[76]
Das A, Mondal TK. Computational identification of conserved micro RNA and their targets in Tea (Camellia sinensis). Am J Plant Sci 2010; 1: 77-86.
[77]
Vitale N, Moss J, Vaughan M. Molecular characterization of the GTPase-activating domain of ADP-ribosylation factor domain protein 1 (ARD1). J Biol Chem 1998; 273(5): 2553-60.
[78]
Pasqualato S, Renault L, Cherfils J. Arf, Arl, Arp and Sar proteins: A family of GTP-binding proteins with a structural device for ‘front-back’ communication. EMBO Rep 2002; 3(11): 1035-41.
[79]
Kozielski F, Arnal I, Wade RH. A model of microtubule-kinesin complex based on electron cryomycroscopy and X-ray crystallography. Curr Biol 1997; 8(4): 191-8.
[80]
Vaucheret H. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 2006; 20: 759-71.
[81]
Pirigapongsa J, Jordan IK. Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 2008; 14(5): 814-21.
[82]
Perez-Quintero AL, Neme R, Zapata A, Lopez C. Plant micro RNAs and their role in defense against viruses: a bioinformatics approach. BMC Plant Biol 2010; 10: 138-50.
[83]
Rajagopalan R, Vaucheret H, Trejo J, Bartel DP. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 2006; 20(24): 3407-25.
[84]
Fahlgren N, Jogdeo S, Kasschau K, et al. Micro RNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana. Plant Cell 2010; 22(4): 1074-89.
[86]
Sanan-Mishra N, Kumar V, Sopory SK, Mukherjee SK. Cloning and validation of novel miRNA from basmati rice indicates cross talk between abiotic and biotic stresses. Mol Genet Genomics 2009; 282: 463-74.