Abstract
Background: Azobenzol derivatives are important organic materials and show unique optical function. As a potential host, azobenzene has been broadly exploited in many areas because of its efficient inclusion ability and easy derivatization by functional groups.
Objective: A series of twelve novel compounds have been synthesized and optimized based on azobenzol derivatives. Method: The binding properties were evaluated for biologically important anions (F-, Cl-, Br-, I-, AcO- and H2PO4-) by theoretical investigation, UV-vis, fluorescence experiments.
Results: The compound containing three nitro groups displayed the strongest binding ability for AcO- ion among synthesized compounds. Theoretical investigation analysis revealed that the intramolecular hydrogen bond existed in the structure of the synthesized compounds.
Conclusion: we have developed twelve compounds based on azobenzol derivatives. Compound 6 involving three nitro groups showed high sensitive and selective binding ability for acetate ion through multiple hydrogen bonds among anions tested including AcO-, F-, H2PO4-, Cl-, Br- and I- due to the conformational complementarity and higher basicity. Compound 6 also can be used as a colorimetric sensor for detecting acetate ion in environmental and pharmacy samples. The above results can provide a clue for the constructing of anion receptor based on azobenzol derivatives.
Keywords: Colorimetric sensor, azobenzol derivatives, synthesis, theoretical investigation, biochemistry, 1HNMR titration.
Graphical Abstract