Generic placeholder image

Recent Patents on Computer Science

Editor-in-Chief

ISSN (Print): 2213-2759
ISSN (Online): 1874-4796

Research Article

An Image Restoration Method with Independently Local Dictionary Learning

Author(s): Jun Yang*

Volume 10, Issue 3, 2017

Page: [223 - 229] Pages: 7

DOI: 10.2174/2213275910666170502151050

Price: $65

Abstract

Background: Recently, sparse representation has been significantly used in various image inverse problems, such as image deblurring, super resolution and compressive sensing, and has shown promising results. The key issue of sparse representation is how to find a reasonable dictionary, by which the image can present more sparsity, as described in various patents.

Method: In this paper, we address the image restoration and propose a novel cost function. Considering the significant difference of underlying structure within different patches, we independently train the dictionary using a set of self-similarity patches to present each patch more sparsely.

Result: To solve the proposed cost function, an approach based on alternating optimization is presented to obtain the approximate solution.

Conclusion: Experimental results demonstrate that the proposed method is superior to many existing excellent algorithms.

Keywords: Image restoration, sparse representation, dictionary learning, optimization, image inversion.

Graphical Abstract


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy