Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Study on Design Modification of Serpentine Micromixers for Better Throughput for Microfluidic Circuitry

Author(s): Pranjal Sarma* and Promod K. Patowari

Volume 8, Issue 2, 2016

Page: [119 - 125] Pages: 7

DOI: 10.2174/1876402909666170217151907

Price: $65

Abstract

Background: Mixing of fluids and reagents at the micro level is a very crucial phenomenon for various microfluidic applications.

Objective: This work focuses on the analysis of serpentine micromixers and various design modifications of them for faster and better mixing purpose.

Method: CFD simulations of the designed micromixers have been carried out at an ultra-low Reynolds number region (Re < 0.25). The designs are modified by incorporating obstacles on their walls in terms of different obstacles. Also a new design of micromixer, the garland micromixer is proposed and its micromixing performance characteristics are evaluated.

Results: Numerical analyses with COMSOL Multiphysics reveal that placing obstacles to the flow in the micromixer can enhance the mixing process significantly. Rectangular shaped obstacles give the better mixing results than the triangular shaped obstacles; on the other hand the triangular shaped obstacles are associated with the least pressure drop among the protruded geometries of the serpentine micromixers. Moreover, the layout having obstacles placed at the mid horizontal portion is giving better mixing as compared to placing obstacle of same size and shape at the corners. Study shows that the mixing efficiency increases as the length of the obstacle increases with a slight deviation as in the case when the obstacles form symmetrical structure with another design element.

Conclusion: The proposed garland design of micromixer is found to be better than the existing serpentine designs for micromixing. These designing concepts can be further explored in conjunction with other flow manipulation techniques for getting enhanced mixing performance.

Keywords: Micromixer, microfluidics, CFD, ultra-low Reynolds number, COMSOL, garland micromixer.

Graphical Abstract


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy