Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Insights into Structure and Reaction Mechanism of β-Mannanases

Author(s): Kedar Sharma, Arun Dhillon and Arun Goyal*

Volume 19, Issue 1, 2018

Page: [34 - 47] Pages: 14

DOI: 10.2174/1389203717666161013115724

Price: $65

Abstract

β-mannanases have been shown to play an important role in various biological processes such as the cell wall component degradation, defence signalling in plants, the mobilization of storage reserves and in various industrial processes. To date, glycoside hydrolases (GHs) have been divided into 135 families and 14 clans from A to N based upon their sequence, overall structural fold and function. β -mannanases belong glycoside hydrolases and exist under four different glycoside hydrolase families, GH5, GH26, GH113 and GH134. GH5 and GH26 are combined in clan GH-A. GH5 and GH26 contain hydrolases which follow the retaining type reaction mechanism. Structural survey of β- mannanases of GH5 and GH26, suggests that both families contain similar TIM barrel fold. In addition, they also share common catalytic residues and their location in the structure. Despite these structural similarities, a distinct difference lies between the substrate binding sub-sites which define substrate specificity. This review summarizes the recent reports on the structure and function perspectives of β- mannanases of GH5 and GH26 and highlights the similarities and differences between them.

Keywords: β-mannanases, TIM barrel, crystal structure, reaction mechanism, degradation, GHs.

Graphical Abstract


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy