Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Prediction of Electrophoretic Mobility of Analytes Using Abraham Solvation Parameters by Different Chemometric Methods

Author(s): Samin Hamidi, Ali Shayanfar, Hossein Hamidi, Elnaz Mehdizadeh Aghdam and Abolghasem Jouyban*

Volume 13, Issue 4, 2017

Page: [325 - 339] Pages: 15

DOI: 10.2174/1573411012666160815101243

Price: $65

Abstract

Background: Quantitative structure-mobility relationships are proposed to estimate the electrophoretic mobility of diverse sets of analytes in capillary zone electrophoresis using Abraham solvation parameters of analytes, namely the excess molar refraction, polarizability, hydrogen bond acidity, basicity, and molar volume. Multiple linear regression (MLR) as a linear model, adaptive neuro-fuzzy inference system (ANFIS), and artificial neural network (ANN) methods were used to evaluate the nonlinear behavior of the involved parameters. The applicability of the Abraham solvation parameters to the mobility prediction of analytes was studied employing various datasets consisting of organic acids, benzoate derivatives, pyridines, and ammoniums.

Methods: To evaluate the simulation ability of the proposed models, datasets were subdivided into training and test sets in the ratio of 3:1. To evaluate the goodness of fit of the models, squared correlation coefficients (R2) between experimental and calculated mobilities were calculated.

Results: R2 values were better than 0.78 for all datasets except for organic acids, in which the ANFIS model showed better ability to predict their mobility than that of MLR and ANN. In addition, the accuracy of the models is calculated using mean percentage deviation (MPD) and the overall MPD values for test sets were better than 15% for all models.

Conclusion: The results showed the ability of the developed models to predict the electrophoretic mobility of analytes in capillary zone electrophoresis.

Keywords: Electrophoretic mobility, capillary zone electrophoresis, quantitative structure-mobility relationship, Abraham solvation parameters, multiple linear regression, artificial neural network, adaptive neuro-fuzzy inference system.

Graphical Abstract


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy