Abstract
Biofilm development is a survival strategy for majority of bacteria to adapt to their living environment. These biofilms are prevalent on most surfaces in nature. Microbial cells in biofilm exhibit significantly enhanced tolerance and resistance to antimicrobial challenge and host defenses. Therefore, the control and eradication of biofilm-associated diseases present a great challenge. Recently, there is considerable biomedical incentive in the development of nanoparticles with self-antibacterial activity or as antibiotic carriers. The advantages of coatings incorporating different types of nano-agents for antimicrobial surface generation are here reviewed. Although the main coatings currently used or investigated and the associated synthesis processes are individually described, emphasis is made on silver-loaded mesoporous thin coatings. Recent developments suggest that mesoporous oxide thin films (especially titania) incorporating metal nanoparticles is becoming a prime candidate for antimicrobial coatings.
Keywords: Antimicrobial coating, self-antibacterial nanoparticles, antibiotic carriers, nanocomposite, mesoporous films, biofilms.
Graphical Abstract