Abstract
Background: Antimicrobial potency of herbal extracts is well known. The review of patents and research articles revealed that several herbal extracts have been employed in the formulation of topical products such as creams, exclusive of the cream reported in the present study. 0ur previous study has established antimicrobial potency of supercritical carbon dioxide extracts of tuberose flowers, better known for its sweet fragrance.
Objective: The present work focuses on formulating a topical antimicrobial herbal cream with methyl eugenol (principal antimicrobial compound) rich - supercritical carbon dioxide extract of tuberose flowers, having good combination of phytochemical and antimicrobial potencies.
Methods: Supercritical carbon dioxide parameters such as temperature, pressure and time were optimized using full factorial experimental design to obtain methyl eugenol-rich extracts. A cream was formulated using the extract having the best combination of phytochemical and antimicrobial potencies and was assayed further for in vitro antimicrobial potency; physiochemical and sensory properties. Two commercial antimicrobial cream samples were used as reference samples in the study.
Result: The extract obtained at 40°C, 10 MPa, 135 min at 1 L min-1 flow rate of gaseous C02 showed the best combination of phytochemical and antimicrobial potencies and was used for formulation of herbal creams. The cream formulated with 5% w/w of extract arrested growth of the common human skin pathogen Staphylococcus aureus and showed stable physiochemical properties and high sensory appeal for a year.
Conclusion: The cream could be considered as a 'finished herbal product' in compliance with the World Health 0rganization guidelines.
Keywords: Tuberose, supercritical carbon dioxide extraction, Staphylococcus aureus, topical cream, antimicrobial potency, physicochemical properties.
Graphical Abstract