Abstract
Control of fluorescent dye localization in live cells is crucial for fluorescence imaging. Here, we describe quantitative structure activity relation (QSAR) models for predicting intracellular localization of fluorescent dyes. For generating the QSAR models, electric charge (Z) calculated by pKa, conjugated bond number (CBN), the largest conjugated fragment (LCF), molecular weight (MW) and log P were used as parameters. We identified the intracellular localization of 119 BODIPY dyes in live NIH3T3 cells, and assessed the accuracy of our models by comparing their predictions with the observed dye localizations. As predicted by the models, no BODIPY dyes localized in nuclei or plasma membranes. The accuracy of the model for localization in fat droplets was 92%, with the models for cytosol and lysosomes showing poorer agreement with observed dye localization, albeit well above chance levels. Overall therefore the utility of QSAR models for predicting dye localization in live cells was clearly demonstrated.
Keywords: Intracellular dye localization, prediction model, QSAR, BODIPY, NIH3T3 cell line, fat droplet model.
Combinatorial Chemistry & High Throughput Screening
Title:Prediction of Intracellular Localization of Fluorescent Dyes Using QSAR Models
Volume: 19 Issue: 5
Author(s): Shohei Uchinomiya, Richard W. Horobin, Enrique Alvarado-Martínez, Eduardo Peña-Cabrera and Young-Tae Chang
Affiliation:
Keywords: Intracellular dye localization, prediction model, QSAR, BODIPY, NIH3T3 cell line, fat droplet model.
Abstract: Control of fluorescent dye localization in live cells is crucial for fluorescence imaging. Here, we describe quantitative structure activity relation (QSAR) models for predicting intracellular localization of fluorescent dyes. For generating the QSAR models, electric charge (Z) calculated by pKa, conjugated bond number (CBN), the largest conjugated fragment (LCF), molecular weight (MW) and log P were used as parameters. We identified the intracellular localization of 119 BODIPY dyes in live NIH3T3 cells, and assessed the accuracy of our models by comparing their predictions with the observed dye localizations. As predicted by the models, no BODIPY dyes localized in nuclei or plasma membranes. The accuracy of the model for localization in fat droplets was 92%, with the models for cytosol and lysosomes showing poorer agreement with observed dye localization, albeit well above chance levels. Overall therefore the utility of QSAR models for predicting dye localization in live cells was clearly demonstrated.
Export Options
About this article
Cite this article as:
Uchinomiya Shohei, W. Horobin Richard, Alvarado-Martínez Enrique, Peña-Cabrera Eduardo and Chang Young-Tae, Prediction of Intracellular Localization of Fluorescent Dyes Using QSAR Models, Combinatorial Chemistry & High Throughput Screening 2016; 19 (5) . https://dx.doi.org/10.2174/1386207319666160408150528
DOI https://dx.doi.org/10.2174/1386207319666160408150528 |
Print ISSN 1386-2073 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5402 |
![](/images/wayfinder.jpg)
- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Modulation of Stem Cell Differentiation by the Influence of Nanobiomaterials/ Carriers
Current Stem Cell Research & Therapy Albumin-based Nanoparticles as Promising Drug Delivery Systems for Cancer Treatment
Current Pharmaceutical Analysis Role of miRNAs in Cancer Diagnostics and Therapy: A Recent Update
Current Pharmaceutical Design Some Applications of Nonlinear Science Methods and Support Vector Machine Methods to Protein Problems
Mini-Reviews in Organic Chemistry Polyisoprenylation Potentiates the Inhibition of Polyisoprenylated Methylated Protein Methyl Esterase and the Cell Degenerative Effects of Sulfonyl Fluorides
Current Cancer Drug Targets Polymer Self-Assembled Nanostructures as Innovative Drug Nanocarrier Platforms
Current Pharmaceutical Design BRCA1-Associated Triple-Negative Breast Cancer and Potential Treatment for Ruthenium-Based Compounds
Current Cancer Drug Targets Efficacy and Cardiovascular Safety of Insulins
Current Drug Safety In Vitro Cytotoxic Activities of Platinum(II) Complex with 1-Methyl-2-(3'- hydroxypropyl)benzimidazole and 2-(3'-Hydroxypropyl)benzimidazolium Hexa- and Tetrachloroplatinate Salts
Letters in Drug Design & Discovery Unravelling the Antioxidant Potential, Alpha-Glucosidase Inhibitory Activity and Phenolic Composition of Dendrocalamus strictus Plantations Generated Biomass Waste (Leaves)
The Natural Products Journal Recent Patents in Bionanotechnologies: Nanolithography,Bionanocomposites, Cell-Based Computing and Entropy Production
Recent Patents on Nanotechnology Peptide Aptamers with Biological and Therapeutic Applications
Current Medicinal Chemistry Electrochemical Biosensors as a Screening Tool of In Vitro DNA-Drug Interaction
Current Pharmaceutical Analysis Detection of Clonal Immunoglobulin and T-Cell Receptor Gene Recombination in Hematological Malignancies: Monitoring Minimal Residual Disease
Cardiovascular & Hematological Disorders-Drug Targets The Role of ABC Transporters in Drug Resistance, Metabolism and Toxicity
Current Drug Delivery A Facile Synthesis and Reactions of Some Novel Pyrazole-based Heterocycles
Current Organic Synthesis Nano-QSPR Modelling of Carbon-Based Nanomaterials Properties
Current Topics in Medicinal Chemistry Microfluidic Devices for Circulating Tumor Cells Isolation and Subsequent Analysis
Current Pharmaceutical Biotechnology Anti-Angiogenic Effects of Resveratrol on Cerebral Angiogenesis
Current Neurovascular Research Pharmacokinetic Profiles of Anticancer Herbal Medicines in Humans and the Clinical Implications
Current Medicinal Chemistry