Abstract
The present review article highlights recent findings in the reactions between different dinuclear Pt(II) complexes with peptides containing cysteine, methionine and histidine residues. The reactions of {trans-[Pt(NH3)2Cl]2(μ-X)}2+ and {trans-[Pt(NH3)2(H2O)]2(μ-X)}4+ type complexes with different bridging ligands (X) (X = pyrazine, 4,4′-bipyridyl and 1,2-bis(4-pyridyl)ethane) with the tripeptide glutathione proceeded in two steps. In the first step, one water or chlorido ligand of the dinuclear Pt(II) complex was substituted by the sulfhydryl group of GSH, while in the second step, the remaining water or chlorido ligand from the dinuclear Pt(II)-peptide complex was replaced by the second molecule of glutathione, finally leading to the formation of the {trans-[Pt(NH3)2(GS)]2(μ-X)}2+ complex. It was shown that the bridging ligand had an important influence on the reactivity of these complexes with glutathione. No hydrolytic cleavage of any amide bond was observed in the reactions between these complexes and glutathione. However, in reactions performed in acidic media (2.0 < pH < 2.5) between dinuclear Pt(II) complexes with the general formulae {[Pt(L)(H2O)]2(μ-diazine)}4+ (L is different bidentate coordinated diamine ligands and diazine is a pyrazine- or pyridazine-bridging ligand) and Nacetylated peptides containing L-methionine and L-histidine amino acids in the side chains (Ac-L-Met-Gly, Ac-L-His-Gly and Ac-L-Met-Gly-L-His-GlyNH2), regioselective cleavage of these peptides occurred. The mechanism of these hydrolytic reactions was discussed in relation to the structure of the diazine-bridged Pt(II) complex and the investigated peptides. A systematic summary of these results could contribute to the future design of new dinuclear Pt(II) complexes as potential reagents for regioselective cleavage of peptides and proteins.
Keywords: Glutathione, L-methionine- and L-histidine-containing peptides, dinuclear platinum(II) complexes, pyrazine, pyridazine, hydrolysis.
Graphical Abstract