Abstract
Fullerenes being allotropes of carbon, have been considered as new class of molecules. Unlike diamond and graphite, this is made up of hollow carbon cage structure. The idea of spheroidal cage structures of C60 arose from construction of geodesic domes made by renowned architect Buckminster Fuller. Although fullerenes have low solubility in physiological media they finds promising biological applications. The photo, electrochemical and physical properties of C60 and other fullerene derivatives finds applications in medical fields. The ability of fullerenes to fit inside the hydrophobic cavity of HIV proteases makes them potential inhibitor for substrates to catalytic active site of enzyme. It possesses radical scavenging and antioxidant property. At the same time, when it exposed to light it can form singlet oxygen in high quantum yields which with direct electron transfer from excited state of fullerenes and DNA bases finally results in cleavage of DNA. The fullerenes are also used as a carrier for gene and drug delivery system. The associated low toxicity of fullerenes is sufficient to attract the researchers for investigation of these interesting molecules.
Keywords: Applications, buckyball, C60, drug delivery, fullerene, toxicity.
Graphical Abstract