Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Immobilization of Proteins in Silica Gel: Biochemical and Biophysical Properties

Author(s): Luca Ronda, Stefano Bruno, Barbara Campanini, Andrea Mozzarelli, Stefania Abbruzzetti, Cristiano Viappiani, Antonio Cupane, Matteo Levantino and Stefano Bettati

Volume 19, Issue 17, 2015

Page: [1653 - 1668] Pages: 16

DOI: 10.2174/1385272819666150601211349

Price: $65

Abstract

The development of silica-based sol-gel techniques compatible with the retention of protein structure and function started more than 20 years ago, mainly for the design of biotechnological devices or biomedical applications. Silica gels are optically transparent, exhibit good mechanical stability, are manufactured with different geometries, and are easily separated from the reaction media. Biomolecules encapsulated in silica gel normally retain their structural and functional properties, are stabilized with respect to chemical and physical insults, and can sometimes exhibit enhanced activity in comparison to the soluble form. This review briefly describes the chemistry of protein encapsulation within the pores of a silica gel three-dimensional network, the mechanism of interaction between the protein and the gel matrix, and its effects on protein structure, function, stability and dynamics. The main applications in the field of biosensor design are described. Special emphasis is devoted to silica gel encapsulation as a tool to selectively stabilize subsets of protein conformations for biochemical and biophysical studies, an application where silica-based encapsulation demonstrated superior performance with respect to other immobilization techniques.

Keywords: Sol-gel, encapsulation, conformational transitions, protein dynamics, heme proteins.


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy