Abstract
Antimalarial drug discovery process is progressively carried out by a combination of innovation and knowledge based methods that include computational and experimental approaches to achieve potent leads. Among the various computational approaches, chemoinformatics plays a critical role in the discovery of new leads or drug candidates. Chemoinformatics provides researchers tools to derive information on substructures, chemical space, similarity and diversity. It also helps to manage and store chemical data, study important molecular properties and filter libraries with regard to specified criteria in the database. To accomplish these ends it uses various tools amongst which are docking, 3D-QSAR, similarity search, virtual screening, database mining and pharmacophore mapping. This review is a perspective of the utility of chemoinformatic approaches in antimalarial drug design. It covers various facets such as targets that have been exploited for antimalarial drug discovery by chemoinformatic methods; potential antimalarial targets that have not yet been explored; the challenges faced in antimalarial drug discovery, and future directions for discovery of novel antimalarial agents.
Keywords: Chemoinformatics, cluster analysis, high throughput screening (HTS), high throughput virtual screening (HTVS), molecular descriptors, molecular similarity and diversity.