Abstract
Cell migration and metastasis greatly contribute to the progression of tumors. Secreted Protein and Rich in Cysteine (SPARC), as a multi-faceted protein, is highly expressed in highly metastatic tumors while low or undetectable in less metastatic types with aberrant promoter methylation. In highly metastatic tumors, such as glioblastomas, melanoma, breast cancer and prostate cancer, SPARC promotes bone metastasis and epithelial-mesenchymal transition (EMT). In contrast, this protein acts as an anti-tumor factor in anti-angiogenesis, pro-apoptosis, cell proliferation inhibition and cell cycle arrest in less metastatic tumors, such as neuroblastoma, ovarian cancer, pancreatic cancer, colorectal cancer and gastric cancer. Here, we summarize and analyze the paradoxical role of SPARC in different tumors. We believe that further studies on truncated, alternative splicing variants and signal peptide of SPARC are required to elucidate the distinct effects. Most notably, SPARC variants probably play a crucial role in regulation of transforming growth factor beta (TGF-β) induced EMT. This review also provides strategies to target or use SPARC (full-length, truncated and splicing variants) for therapeutic purposes.
Keywords: Bone metastasis, EMT, highly metastatic tumors, less metastatic tumors, SPARC.
Current Pharmaceutical Design
Title:SPARC in Tumor Pathophysiology and as a Potential Therapeutic Target
Volume: 20 Issue: 39
Author(s): Jianguo Feng and Liling Tang
Affiliation:
Keywords: Bone metastasis, EMT, highly metastatic tumors, less metastatic tumors, SPARC.
Abstract: Cell migration and metastasis greatly contribute to the progression of tumors. Secreted Protein and Rich in Cysteine (SPARC), as a multi-faceted protein, is highly expressed in highly metastatic tumors while low or undetectable in less metastatic types with aberrant promoter methylation. In highly metastatic tumors, such as glioblastomas, melanoma, breast cancer and prostate cancer, SPARC promotes bone metastasis and epithelial-mesenchymal transition (EMT). In contrast, this protein acts as an anti-tumor factor in anti-angiogenesis, pro-apoptosis, cell proliferation inhibition and cell cycle arrest in less metastatic tumors, such as neuroblastoma, ovarian cancer, pancreatic cancer, colorectal cancer and gastric cancer. Here, we summarize and analyze the paradoxical role of SPARC in different tumors. We believe that further studies on truncated, alternative splicing variants and signal peptide of SPARC are required to elucidate the distinct effects. Most notably, SPARC variants probably play a crucial role in regulation of transforming growth factor beta (TGF-β) induced EMT. This review also provides strategies to target or use SPARC (full-length, truncated and splicing variants) for therapeutic purposes.
Export Options
About this article
Cite this article as:
Feng Jianguo and Tang Liling, SPARC in Tumor Pathophysiology and as a Potential Therapeutic Target, Current Pharmaceutical Design 2014; 20 (39) . https://dx.doi.org/10.2174/1381612820666140619123255
DOI https://dx.doi.org/10.2174/1381612820666140619123255 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Signal Transduction Therapy Targeting Apoptosis Pathways in Cancers
Current Signal Transduction Therapy Post-Transcriptional Regulation of HSP70 Expression Following Oxidative Stress in SH-SY5Y Cells: The Potential Involvement of the RNA-Binding Protein HuR
Current Pharmaceutical Design The ‘Other’ Telomerase Inhibitors: Non-G-Quadruplex Interactive Agent, Non-Antisense, Non-Reverse Transcriptase Telomerase Inhibitors
Current Medicinal Chemistry - Anti-Cancer Agents Recent Developments in Taxane Drug Delivery
Current Drug Delivery Genome-wide Analysis of Myelodysplastic Syndromes
Current Pharmaceutical Design Chemistry of SPOT Synthesis for the Preparation of Peptide Macroarrays on Cellulose Membranes
Mini-Reviews in Organic Chemistry Immunotherapeutic Options for Pediatric Malignancies
Current Immunology Reviews (Discontinued) Green Tea, A Medicinal Food with Promising Neurological Benefits
Current Neuropharmacology An Update on Extemporaneous Preparation of Radiopharmaceuticals Using Freeze-Dried Cold Kits
Mini-Reviews in Medicinal Chemistry Effects of Proteoglycans on Oxidative/Nitrative Stress
Current Organic Chemistry Natural Polymeric Nanoparticles for Brain-Targeting: Implications on Drug and Gene Delivery
Current Pharmaceutical Design Roles of EGFR, PI3K, AKT, and mTOR in Heavy Metal-Induced Cancer
Current Cancer Drug Targets Choline Nutrition Programs Brain Development Via DNA and Histone Methylation
Central Nervous System Agents in Medicinal Chemistry Iodine in Mammary and Prostate Pathologies
Current Chemical Biology Design, Synthesis and Evaluation of Novel 2-piperidinyl Quinoline Chalcones/ Amines as Potential Antidepressant Agents
Letters in Drug Design & Discovery Synthesis of the Alzheimer Drug Posiphen into its Primary Metabolic Products (+)-N1-norPosiphen, (+)-N8-norPosiphen and (+)-N1, N8-bisnorPosiphen, their Inhibition of Amyloid Precursor Protein, α -Synuclein Synthesis, Interleukin-1β Release, and Cholinergic Action.
Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry Bv8-Prokineticins and their Receptors: Modulators of Pain
Current Pharmaceutical Biotechnology Recent Advances in Health Promoting Effect of Dietary Polyphenols
Current Nutrition & Food Science Galectins: Major Signaling Modulators Inside and Outside the Cell
Current Molecular Medicine Adhesion Molecules in Lung Cancer: Implications in the Pathogenesis and Management
Current Pharmaceutical Design