Abstract
The basic and the higher fullerenes were chromatographically isolated from the obtained series of carbon soot extracts, in increased yields, by the new, advanced methods, on Al2O3 columns. The elution was performed continuously, in one phase of each process, at ambient conditions, with the several different original hexane-toluene gradients. Various separation systems were used previously. The unique and the main, dominant absorption maxima of the purified higher fullerenes were registered in the spectral regions where they intensively absorb, applying the IR and UV/VIS techniques. All the observed absorption bands are in excellent agreement with theoretical calculations, indicating the achieved advancement in chromatographic separation and spectroscopic characterization. The isolated fullerenes are important for investigation of their remarkable optical and electronic properties, as well as for the numerous possible applications in chemistry, physics, biomedicine, diagnostic and therapeutic agents, sensors, polymers, nanophotonic materials, special lenses, optical limiting, organic field effect transistors, solar cells etc.
Keywords: Al2O3, basic fullerenes, column chromatographies, carbon soot, electric arc, higher fullerenes, selective extractions, separation, IR, UV/VIS spectroscopy.