Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Engineering Lipases for Enhanced Catalysis

Author(s): Bhavya Ravi, Ujjwal Banerjee, Sandhya Mehrotra and Rajesh Mehrotra

Volume 7, Issue 2, 2013

Page: [114 - 120] Pages: 7

DOI: 10.2174/2212796811206020123

Price: $65

Abstract

Lipases are versatile biocatalysts that catalyze a plethora of reactions such as hydrolysis, esterification, transesterification, aminolysis and acidolysis, making them one of the most sought biocatalysts for industrial applications. However, their widespread use in industry is hampered by problems arising mainly due to loss of activity, thermal denaturation, deactivation by organic solvents etc., which affect reaction yields and lead to impaired enzyme recyclability and reusability for successive runs. Methods such as enzyme immobilization, reaction engineering and molecular biology approaches are being used to alleviate these impediments. Lipase bio-imprinting and molecular biology techniques such as rational protein design and directed evolution have made it possible to engineer lipases having superior properties and selectivities, greatly enhancing their activities and operational stability thereby improving reaction yields. This review focuses on the applicability of the above-mentioned strategies to create tailor-designed lipase enzymes to suit specific reactions needs with an emphasis on the transesterification reaction to produce biodiesel.

Keywords: Bio-imprinting, directed evolution, error-prone PCR, Rational Protein Design, site-directed mutagenesis.


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy