Abstract
HIV-1, the agent responsible for AIDS, belongs to the retrovirus family. Assembly of the immature HIV-1 capsid occurs through the controlled polymerization of the Gag polyprotein, which is transported to the plasma membrane of infected cells, where morphogenesis of the immature, non-infectious virion occurs. Moreover, the mature capsid of HIV-1 is formed by the assembly of copies of the capsid protein (CA), which results, among other proteins, from cleavage of Gag. The C-terminal domain of CA (CTD) can homodimerize, and most of the dimerization interface is formed by a single α-helix from each monomer. Assembly of the HIV-1 capsid critically depends on CA-CA interactions, including CTD interaction with itself and with the N-terminal domain of CA (NTD). This review will report on recent advances for the search of small organic compounds and peptides that have been designed in the last four years to hamper CA assembly. Most of the molecules have been proved to interact with CA; such molecules aim to disrupt and/or alter the oligomerization capability of CTD and/or NTD.
Keywords: Assembly, capsid protein, drug design, inhibitors, peptides.