Generic placeholder image

Drug Metabolism Letters

Editor-in-Chief

ISSN (Print): 1872-3128
ISSN (Online): 1874-0758

Formation/Fate of Reactive Metabolites from General Anesthetics and A Comparison of Toxic and Non-Toxic Analogues: A DFT Study

Author(s): Sonam Bhatia, Vaibhav A. Dixit, Harish Jangra and Prasad V. Bharatam

Volume 6, Issue 4, 2012

Page: [221 - 234] Pages: 14

DOI: 10.2174/1872312811206040001

Price: $65

Abstract

Chloroform and Halothane are well known hepatotoxic anesthetics for which toxicity is attributed to their reactive metabolites. The molecular level details of reactions leading to the formation of reactive metabolites from chloroform and halothane have not been explored. Potential energy surface (PES) for the formation of phosgene (a toxic intermediate) from Chloroform has been studied using quantum chemical methods. The HOOH mediated reaction of chloroform to give phosgene has been found to be exothermic by 81.24 kcal/mol with a barrier of ~ 3 kcal/mol through the water catalyzed transition sate. The quantum chemical studies on the reactivity profile of phosgene indicated that urea derivatives need to be considered on the mechanism leading to toxicity. Similarly, metabolic pathways of Halothane oxidation have been studied. The C-H bond dissociation energies (BDE) and radical stabilization energies (RSE) for Chloroform and Halothane (< 95 kcal/mol and > 10 kcal/mol) were found to be significantly different for these toxic anesthetics in comparison to their safer analogues (> 100 kcal/mol and < 5 kcal/mol) respectively; thus these parameters can be employed to distinguish toxic and non-toxic general anesthetics. Enthalpy for the Cpd I, a widely used model for CYP450 enzymes, mediated reactions also agreed well with these results.

Keywords: General anesthetics, DFT study, toxicity, metabolism, haloalkanes, Radical Stabilization Energy.

Next »

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy