Abstract
Combining radiation therapy and direct intratumoral (IT) injection of adenoviral vectors has been explored as a means to enhance the therapeutic potential of gene transfer. A major challenge for gene transfer is systemic delivery of nucleic acids directly into an affected tissue. Ultrasound (US) contrast agents (microbubbles) are viable candidates to enhance targeted delivery of systemically administered genes.
Here we show that p53, pRB, and p130 gene transfer mediated by US cavitation of microbubbles at the tumor site resulted in targeted gene transduction and increased reduction in tumor growth compared to DU-145 prostate cancer cell xenografts treated intratumorally with adenovirus (Ad) or radiation alone. Microbubble-assisted/US-mediated Ad.p53 and Ad.RB treated tumors showed significant reduction in tumor volume compared to Ad.p130 treated tumors (p<0.05). Additionally, US mediated microbubble delivery of p53 and RB combined with external beam radiation resulted in the most profound tumor reduction in DU-145 xenografted nude mice (p<0.05) compared to radiation alone. These findings highlight the potential therapeutic applications of this novel image-guided gene transfer technology in combination with external beam radiation for prostate cancer patients with therapy resistant disease.
Keywords: Retinoblastoma, RB, p130, p53, tumor suppressor gene, microbubbles, ultrasound, systemic targeted viral gene delivery, radiation, external beam radiation, apoptosis induction, prostate cancer.
Current Gene Therapy
Title:Microbubble-Assisted p53, RB, and p130 Gene Transfer in Combination with Radiation Therapy in Prostate Cancer
Volume: 13 Issue: 3
Author(s): Rounak Nande, Adelaide Greco, Michael S. Gossman, Jeffrey P. Lopez, Luigi Claudio, Marco Salvatore, Arturo Brunetti, James Denvir, Candace M. Howard and Pier Paolo Claudio
Affiliation:
Keywords: Retinoblastoma, RB, p130, p53, tumor suppressor gene, microbubbles, ultrasound, systemic targeted viral gene delivery, radiation, external beam radiation, apoptosis induction, prostate cancer.
Abstract: Combining radiation therapy and direct intratumoral (IT) injection of adenoviral vectors has been explored as a means to enhance the therapeutic potential of gene transfer. A major challenge for gene transfer is systemic delivery of nucleic acids directly into an affected tissue. Ultrasound (US) contrast agents (microbubbles) are viable candidates to enhance targeted delivery of systemically administered genes.
Here we show that p53, pRB, and p130 gene transfer mediated by US cavitation of microbubbles at the tumor site resulted in targeted gene transduction and increased reduction in tumor growth compared to DU-145 prostate cancer cell xenografts treated intratumorally with adenovirus (Ad) or radiation alone. Microbubble-assisted/US-mediated Ad.p53 and Ad.RB treated tumors showed significant reduction in tumor volume compared to Ad.p130 treated tumors (p<0.05). Additionally, US mediated microbubble delivery of p53 and RB combined with external beam radiation resulted in the most profound tumor reduction in DU-145 xenografted nude mice (p<0.05) compared to radiation alone. These findings highlight the potential therapeutic applications of this novel image-guided gene transfer technology in combination with external beam radiation for prostate cancer patients with therapy resistant disease.
Export Options
About this article
Cite this article as:
Nande Rounak, Greco Adelaide, Gossman Michael S., Lopez Jeffrey P., Claudio Luigi, Salvatore Marco, Brunetti Arturo, Denvir James, Howard Candace M. and Claudio Pier Paolo, Microbubble-Assisted p53, RB, and p130 Gene Transfer in Combination with Radiation Therapy in Prostate Cancer, Current Gene Therapy 2013; 13 (3) . https://dx.doi.org/10.2174/1566523211313030001
DOI https://dx.doi.org/10.2174/1566523211313030001 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers (BMS-CGT-2024-HT-45)
Programmed Cell Death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Recent Development of Anticancer Therapeutics Targeting Akt
Recent Patents on Anti-Cancer Drug Discovery New Insights of CTLA-4 into Its Biological Function in Breast Cancer
Current Cancer Drug Targets Environmental Factors and Hypertension
Current Pharmaceutical Design MicroRNA Regulation of Programmed Cell Death Pathways in Cancer
Current Chemical Biology Docetaxel-loaded Bovine Serum Albumin Nanoparticles Conjugated Docosahexaenoic Acid for Inhibiting Lung Cancer Metastasis to Bone
Anti-Cancer Agents in Medicinal Chemistry Differential Serum Level of Specific Haptoglobin Isoforms in Small Cell Lung Cancer
Current Proteomics Network-based Assessment on Chemical-induced Cholestatic Liver Injury
Current Topics in Medicinal Chemistry Magnetic Nanoparticles for MRI of Brain Tumors
Current Pharmaceutical Biotechnology Recent Advances of Novel Therapeutic Agents from Botanicals for Prevention and Therapy of Breast Cancer: An Updated Review
Current Cancer Therapy Reviews Degradation of Androgen Receptor through Small Molecules for Prostate Cancer
Current Cancer Drug Targets mTOR Inhibitors in Tuberous Sclerosis Complex
Current Neuropharmacology Th17 and Treg Cells, Two New Lymphocyte Subpopulations with a Key Role in the Immune Response Against Infection
Infectious Disorders - Drug Targets Protein Geranylgeranyltransferase Type 1 as a Target in Cancer
Current Cancer Drug Targets Clinical Applications of Positron Emission Tomography (PET) Imaging in Medicine: Oncology, Brain Diseases and Cardiology
Current Radiopharmaceuticals Gold Nanostructures as Photothermal Therapy Agent for Cancer
Anti-Cancer Agents in Medicinal Chemistry Mining Sarcomas by Proteomics Approaches: Ewing Sarcoma on the Spotlight
Recent Patents on Biotechnology Deciphering Transcriptional Regulation Relevant to Eating Behavior
Current Genomics DNA Methyltransferases Inhibitors from Natural Sources
Current Topics in Medicinal Chemistry Unveiling the Role of Nuclear Transport in Epithelial-to-Mesenchymal Transition
Current Cancer Drug Targets Inhibitory Effect of Artemisinin on Testosterone Propionate Induced Benign Prostatic Hyperplasia
Current Drug Discovery Technologies