Abstract
Background: Epoxyeicosatrienoic acids (EETs) have been shown to play a role in cardiovascular protection by reducing ischemia reperfusion injury, producing anti-inflammatory effects, and promoting angiogenesis. EETs are regulated through conversion to less active corresponding diols by soluble epoxide hydrolase (sEH). Inhibition of sEH enhances the beneficial properties of EETs and has been investigated as a possible treatment for cardiovascular diseases. Content: sEH inhibitors (sEHIs) have anti-inflammatory effects by stabilizing anti-inflammatory EETs. Additionally, sEHIs strongly inhibit and reverse cardiac hypertrophy. sEHIs have been shown to protect myocardial cells from ischemiareperfusion injury, treat atherosclerosis and prevent the development of hypertension. sEHIs promote blood vessels to release bradykinin via an EET-mediated STAT3 signaling pathway to elicit tolerance to ischemia. Summary: Inhibition of sEH has been shown to improve several aspects of cardiovascular diseases, including inflammation, hypertension, cardiac hypertrophy and atherosclerosis. For this reason, sEHIs are promising new pharmaceutical for the treatment of cardiovascular diseases.
Keywords: Soluble epoxide hydrolase, epoxyeicosatrienoic acids, cardiovascular diseases, fibrinolysis, stabilizing EETs, peroxisomes
Current Vascular Pharmacology
Title:Soluble Epoxide Hydrolase Inhibitors and Cardiovascular Diseases
Volume: 11 Issue: 1
Author(s): Zhen-He Wang, Benjamin B. Davis, De-Qian Jiang, Ting-Ting Zhao and Dan-Yan Xu
Affiliation:
Keywords: Soluble epoxide hydrolase, epoxyeicosatrienoic acids, cardiovascular diseases, fibrinolysis, stabilizing EETs, peroxisomes
Abstract: Background: Epoxyeicosatrienoic acids (EETs) have been shown to play a role in cardiovascular protection by reducing ischemia reperfusion injury, producing anti-inflammatory effects, and promoting angiogenesis. EETs are regulated through conversion to less active corresponding diols by soluble epoxide hydrolase (sEH). Inhibition of sEH enhances the beneficial properties of EETs and has been investigated as a possible treatment for cardiovascular diseases. Content: sEH inhibitors (sEHIs) have anti-inflammatory effects by stabilizing anti-inflammatory EETs. Additionally, sEHIs strongly inhibit and reverse cardiac hypertrophy. sEHIs have been shown to protect myocardial cells from ischemiareperfusion injury, treat atherosclerosis and prevent the development of hypertension. sEHIs promote blood vessels to release bradykinin via an EET-mediated STAT3 signaling pathway to elicit tolerance to ischemia. Summary: Inhibition of sEH has been shown to improve several aspects of cardiovascular diseases, including inflammation, hypertension, cardiac hypertrophy and atherosclerosis. For this reason, sEHIs are promising new pharmaceutical for the treatment of cardiovascular diseases.
Export Options
About this article
Cite this article as:
Wang Zhen-He, B. Davis Benjamin, Jiang De-Qian, Zhao Ting-Ting and Xu Dan-Yan, Soluble Epoxide Hydrolase Inhibitors and Cardiovascular Diseases, Current Vascular Pharmacology 2013; 11 (1) . https://dx.doi.org/10.2174/1570161111309010105
DOI https://dx.doi.org/10.2174/1570161111309010105 |
Print ISSN 1570-1611 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-6212 |

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Fragmented ECG as a Risk Marker in Cardiovascular Diseases
Current Cardiology Reviews The Angiotensin Converting Enzyme 2 (ACE2), Gut Microbiota, and Cardiovascular Health
Protein & Peptide Letters Editorial: [Hot Topic: Chromogranin A at the Crossroads of Health and Disease]
Current Medicinal Chemistry Non-Transferrin Bound Iron - Determination in Biological Material and Clinical Implications
Current Pharmaceutical Analysis Rethinking Target Discovery in Polygenic Diseases
Current Topics in Medicinal Chemistry Cardiac Regeneration by Progenitor Cells: What Is It Known as and What Is It Still to Be Known as?
Cardiovascular & Hematological Agents in Medicinal Chemistry The Role of Amino Acids in the Modulation of Cardiac Metabolism During Ischemia and Heart Failure
Current Pharmaceutical Design “The Future Magic Bullet”: A Review of Pharmacological Activities of Ethyl Pyruvate and its Derivatives
Current Drug Therapy Nanocarriers Assisted siRNA Gene Therapy for the Management of Cardiovascular Disorders
Current Pharmaceutical Design Protein-Energy Malnutrition Alters Thermoregulatory Homeostasis and the Response to Brain Ischemia
Current Neurovascular Research Carbon Monoxide in Acute Lung Injury
Current Pharmaceutical Biotechnology A Review on Response of Immune System in Spinal Cord Injury and Therapeutic Agents useful in Treatment
Current Pharmaceutical Biotechnology Tanshinone IIA Protects Hippocampal Neuronal Cells from Reactive Oxygen Species Through Changes in Autophagy and Activation of Phosphatidylinositol 3-Kinase, Protein Kinas B, and Mechanistic Target of Rapamycin Pathways
Current Neurovascular Research Heat Shock Proteins in Diabetes and Wound Healing
Current Protein & Peptide Science Treatment of Pancreatic Cancer with Pharmacological Ascorbate
Current Pharmaceutical Biotechnology Small Molecule Antagonists of the CXCR2 and CXCR1 Chemokine Receptors as Therapeutic Agents for the Treatment of Inflammatory Diseases
Current Topics in Medicinal Chemistry Phenolic Acids Exert Anticholinesterase and Cognition-Improving Effects
Current Alzheimer Research Impact of Inhibitors of the Renin-Angiotensin-Aldosterone System on Liver Fibrosis and Portal Hypertension
Current Medicinal Chemistry A Novel Danshensu-Tetramethylpyrazine Conjugate DT-018 Provides Cardioprotection by Preserving Mitochondrial Function Through the MEF2D/PGC-1α Pathway
Current Pharmaceutical Design The Neutrophil: An Underappreciated But Key Player in SLE Pathogenesis
Current Immunology Reviews (Discontinued)