Abstract
RNA interference (RNAi) represents a promising new gene silencing technology for functional genomics and a potential therapeutic strategy for a variety of genetic diseases. RNAi involves the targeted post-transcriptional degradation of messenger RNA thereby inhibiting the synthesis of the desired protein. This effectively leads to silencing of gene expression. The effectors of this process are short interfering RNA (siRNA) duplexes (∼21-23nt) that are key intermediaries in the specific degradation of target mRNA following incorporation into the RNA-induced silencing complex (RISC) in the cytosol. However, due to the large molecular weight and negative charge of siRNA duplexes the effective cellular uptake and intracellular delivery appear to represent a major challenge for the widespread use of RNAi in vivo. This review summarises some of the main delivery strategies that have been attempted for the transfection of siRNA to cells in vitro and in vivo.
Keywords: Short interfering RNA, design, delivery, RNA interference, RNAi, antisense oligonucleotides, transfection, gene therapy
Current Drug Delivery
Title: Delivery Strategies for siRNA-mediated Gene Silencing
Volume: 3 Issue: 2
Author(s): Ian R. Gilmore, Stephen P. Fox, Andrew J. Hollins and Saghir Akhtar
Affiliation:
Keywords: Short interfering RNA, design, delivery, RNA interference, RNAi, antisense oligonucleotides, transfection, gene therapy
Abstract: RNA interference (RNAi) represents a promising new gene silencing technology for functional genomics and a potential therapeutic strategy for a variety of genetic diseases. RNAi involves the targeted post-transcriptional degradation of messenger RNA thereby inhibiting the synthesis of the desired protein. This effectively leads to silencing of gene expression. The effectors of this process are short interfering RNA (siRNA) duplexes (∼21-23nt) that are key intermediaries in the specific degradation of target mRNA following incorporation into the RNA-induced silencing complex (RISC) in the cytosol. However, due to the large molecular weight and negative charge of siRNA duplexes the effective cellular uptake and intracellular delivery appear to represent a major challenge for the widespread use of RNAi in vivo. This review summarises some of the main delivery strategies that have been attempted for the transfection of siRNA to cells in vitro and in vivo.
Export Options
About this article
Cite this article as:
Gilmore R. Ian, Fox P. Stephen, Hollins J. Andrew and Akhtar Saghir, Delivery Strategies for siRNA-mediated Gene Silencing, Current Drug Delivery 2006; 3 (2) . https://dx.doi.org/10.2174/156720106776359159
DOI https://dx.doi.org/10.2174/156720106776359159 |
Print ISSN 1567-2018 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5704 |

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers