Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Permeation of PLGA Nanoparticles Across Different in vitro Models

Author(s): Lindiwe A. Nkabinde, Lungile N.N. Shoba-Zikhali, Boitumelo Semete-Makokotlela, Lonji Kalombo, Hulda S. Swai, Rose Hayeshi, Brendon Naicker, Thembela K. Hillie and Josias H. Hamman

Volume 9, Issue 6, 2012

Page: [617 - 627] Pages: 11

DOI: 10.2174/156720112803529819

Price: $65

Abstract

Many drug delivery systems have indicated improvement in delivery of various drug molecules and among these biodegradable and biocompatible polymers such as poly(D,L-lactide-co-glycolide) (PLGA) have been shown to enhance intracellular uptake of drug candidates when formulated as nanoparticles. PLGA nanoparticles were prepared by means of a double emulsion solvent evaporation technique and evaluated in terms of size, encapsulation efficiency, surface charge, isoniazid release and in vitro transport. The nanoparticles have an average size of 237 nm and were previously shown to be distributed in several tissues after oral administration without triggering an immune response. This study focussed on the in vitro permeation of the PLGA nanoparticles across different membranes and showed that although Rhodamine 6G-labelled nanoparticles are efficiently delivered across the intestinal epithelium, its epithelial permeability changes when a drug such as isoniazid is encapsulated. Future studies should focus on ways to optimise PLGA nanoparticle delivery when a drug such as isoniazid is encapsulated for instance by coating with polymers such as polyethylene glycol.

Keywords: Caco-2, isoniazid, nanoparticles, parallel artificial membrane permeability assay, poly(D, L-lactide-co-glycolide), transport


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy