Generic placeholder image

Recent Patents on Computer Science

Editor-in-Chief

ISSN (Print): 2213-2759
ISSN (Online): 1874-4796

Credit Decision-making Modeling of Banks with Support Vector Machine on Empirical Samples from Chinese Listed Companies between 2001 - 2010

Author(s): Lu-Ya Lv, Fan Shi, Xiao-Qin Ni, Jie Sun, Qing-Hua Huang and Hui Li

Volume 4, Issue 1, 2011

Page: [53 - 59] Pages: 7

DOI: 10.2174/2213275911104010053

Price: $65

Abstract

Credit decision is one of the major businesses for banks, and it plays a vital role for a bank ’ s development. It is of vital importance to improve the identification accuracy of debtors financial situations, though there are many tools for financial data analysis. Support vector machine (SVM), a technique of artificial intelligence, has a relatively high accuracy for solving binary classification problems with small samples. This paper used ST (Special Treatment) together with an improvement of long-term loans for two consecutive years and non-ST (never under special treatment) of Chinese listed companies as two classes of financial situations and employed financial indicators as variables to construct SVM models for banks credit decision-making, along with the discussion of related recent patents. Our conclusion is that SVM has relatively higher classification accuracy than some other classifiers, including neural network, decision tree, and discriminant analysis. Therefore, application of SVM to bank credit decision-making is feasible and efficient. The review also discussed relevant patents.

Keywords: Chinese listed companies, classification accuracy, credit risk in banks, decision making, polynomial kernel, support vector machine (SVM), multivariate discriminant analysis (MDA), DATA PROCESSING, MODELING IMPLEMENTATION, SPSS software, Software Preparation, Data Grouping


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy