Abstract
Mesenchymal stromal cells (MSC) isolated from a variety of adult tissues including the bone marrow (BM), have the capacity to differentiate into different cell types such as bone and cartilage and have therefore attracted scientific interest as potential therapeutic tools for tissue repair. MSC display also immunosuppressive and anti-inflammatory properties and their putative therapeutic role in a variety of inflammatory autoimmune diseases is currently under investigation. Joint destruction, caused by persistent inflammation, renders rheumatoid arthritis (RA) a possible clinical target for cartilage and bone repair using BM MSCs for their tissue repair and immunoregulatory effects. A number of studies, based mainly on experimental animal models, have recently provided interesting data on the potential of BM-MSCs to suppress local inflammation and tissue damage in RA whereas tissue engineering and cell-scaffold technology represents an emerging field of research. This review deals with the biological repair/regeneration of joint tissues in RA via MSCbased therapies. In view of the current interest in the autologous usage of BM MSC in RA, all available data on the biological properties of patient MSCs including the immunoregulatory characteristics, differentiation capacity towards osteocytes/ chondrocytes, clonogenic/proliferative potential and molecular/protein profile and the possible influence of the RA milieu will be also summarized.
Keywords: Mesenchymal stromal cells (MSCs), bone marrow, rheumatoid arthritis, autoimmune diseases, tissue regeneration