Abstract
Because synthetic short peptides bearing critical binding residues, can chemically mimic the folded antigenic determinants on proteins, short synthetic peptides can generate antibodies that react with cognate sequences in intact folded proteins. According to this mimotope theory, we produced site-specific antibodies by immunization with short peptides which overlapped each other and covered the entire protein, and used them for domain mapping of influenza virus RNA polymerase (antibody-scanning method). We also used a tagged-epitope and its monoclonal antibodies for topology mapping of clathrin light chains in clathrin triskelions by electron microscopy. Both methods using specific epitopes in combination with their antibodies enable us to determine the domains of interesting proteins systematically without the need to generate monoclonal antibodies or mutant proteins.
Keywords: Antibody-Scanning, Epitope-tagging methods, Molecular mapping, Antibodies, CDNAs, HDEl, Saccharomyces cerevisiae, Rotary Shadowing, Epitope-tagging, Topology Mapping method