Abstract
This review describes the role of nuclear receptors in the regulation of genes involved in cholesterol transport and synthetic modulators of these receptors. Increasing the efflux of cholesterol from peripheral cells, such as lipid-laden macrophages, through a process called reverse cholesterol transport (RCT) requires HDL. Increasing the circulating levels of HDL, as well as the efficiency of the RCT process, could result in a reduction in the development of coronary artery disease and atherosclerosis. Nuclear receptors of the RXR heterodimer family have recently been shown to regulate key genes involved in HDL metabolism and reverse cholesterol transport. These include the PPARs (peroxisome proliferator activated receptors), the LXR (liver X receptor) and the farnesoid X receptor (FXR). The synthesis of specific and potent ligands for these receptors has aided in ascertaining the physiological role of these receptors as lipid sensors and the potential therapeutic utility of modulators of these receptors in dyslipidemias and cardiovascular disease.
Keywords: atherosclerotic disease, low density lipoproteins (ldl), reverse cholesterol transport (rct), coronary artery disease, peroxisome proliferator activated receptor alpha, rexinoid x receptor (rxr), phospholipid, expression
Current Topics in Medicinal Chemistry
Title: Nuclear Receptors as Potential Targets for Modulating Reverse Cholesterol Transport
Volume: 5 Issue: 3
Author(s): Patricia D. Pelton, Mona Patel and Keith T. Demarest
Affiliation:
Keywords: atherosclerotic disease, low density lipoproteins (ldl), reverse cholesterol transport (rct), coronary artery disease, peroxisome proliferator activated receptor alpha, rexinoid x receptor (rxr), phospholipid, expression
Abstract: This review describes the role of nuclear receptors in the regulation of genes involved in cholesterol transport and synthetic modulators of these receptors. Increasing the efflux of cholesterol from peripheral cells, such as lipid-laden macrophages, through a process called reverse cholesterol transport (RCT) requires HDL. Increasing the circulating levels of HDL, as well as the efficiency of the RCT process, could result in a reduction in the development of coronary artery disease and atherosclerosis. Nuclear receptors of the RXR heterodimer family have recently been shown to regulate key genes involved in HDL metabolism and reverse cholesterol transport. These include the PPARs (peroxisome proliferator activated receptors), the LXR (liver X receptor) and the farnesoid X receptor (FXR). The synthesis of specific and potent ligands for these receptors has aided in ascertaining the physiological role of these receptors as lipid sensors and the potential therapeutic utility of modulators of these receptors in dyslipidemias and cardiovascular disease.
Export Options
About this article
Cite this article as:
Pelton D. Patricia, Patel Mona and Demarest T. Keith, Nuclear Receptors as Potential Targets for Modulating Reverse Cholesterol Transport, Current Topics in Medicinal Chemistry 2005; 5 (3) . https://dx.doi.org/10.2174/1568026053544588
DOI https://dx.doi.org/10.2174/1568026053544588 |
Print ISSN 1568-0266 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4294 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Biochemical and Histochemical Comparison of Cholinesterases in Normal and Alzheimer Brain Tissues
Current Alzheimer Research Mechanisms for Antiplatelet Action of Statins
Current Drug Targets - Cardiovascular & Hematological Disorders Nitric Oxide, Peroxynitrite, Peroxynitrous Acid, Nitroxyl, Nitrogen Dioxide, Nitrous Oxide: Biochemical Mechanisms and Bioaction
Current Bioactive Compounds Recent Advances in the Methodology and Application for the Metabolism of Phytochemical Compounds-An Update Covering the Period of 2009-2014
Current Drug Metabolism Relevance of Postprandial Lipemia in Metabolic Syndrome
Current Vascular Pharmacology The Physiology of Nitric Oxide: Control and Consequences
Current Medicinal Chemistry - Anti-Inflammatory & Anti-Allergy Agents Planar Cell Polarity Signaling in Collective Cell Movements During Morphogenesis and Disease
Current Genomics Anti-Inflammatory Responses of Resveratrol
Inflammation & Allergy - Drug Targets (Discontinued) Evaluation of In Vivo Efficacy of Aqueous Extract of Aerial Parts of Cynodon dactylon in Rats with Simultaneous Type 2 Diabetes and Hypertension
Current Bioactive Compounds Rhodanine as a Privileged Scaffold in Drug Discovery
Current Medicinal Chemistry The Role of High-Density Lipoprotein Cholesterol in the Prevention and Possible Treatment of Cardiovascular Diseases
Current Molecular Medicine Biomarkers Associated with Stroke Risk in Atrial Fibrillation
Current Medicinal Chemistry Arsenic Immunotoxicity and Immunomodulation by Phytochemicals: Potential Relations to Develop Chemopreventive Approaches
Recent Patents on Inflammation & Allergy Drug Discovery Therapeutic Modulation of Lipoprotein-associated Phospholipase A2 (Lp-PLA2)
Current Pharmaceutical Design Therapeutic Approaches for Reducing C-Reactive Protein (CRP) Levels and the Associated Cardiovascular Risk
Current Chemical Biology Pharmacotherapy of Dilated Cardiomyopathy
Current Pharmaceutical Design Syncope: Review of Monitoring Modalities
Current Cardiology Reviews Implications of Pharmacogenetics for Oral Anticoagulants Metabolism
Current Drug Metabolism Pharmacotherapy of Aortic Stenosis-Success or Failure?
Current Pharmaceutical Biotechnology Managing Safety Signals in Large Endpoint Trials
Current Drug Safety