Abstract
A novel series of nonradiolabeled, polyfluorinated phenyltropanes were developed containing three or more 19 F atoms/molecule in a magnetic resonance (MR) equivalent chemical environment to increase coherent MR signal characteristics. Competitive radioreceptor affinity assays of such compounds yielded nM affinity at dopamine (DAT) and serotonin (SERT) transporters in rat brain tissue. Compound 3b (MCL-314) at 50 μM gave a clear magnetic resonance spectroscopy signal, and 9 (MCL-319) yielded very high DAT potency and improved selectivity over SERT. Such compounds might potentially serve as MRI- or MRS-detectable index ligands for the dopamine transporter proteins, and preliminary observations call for further study of additional polyfluorinated phenyltropanes.
Keywords: polyfluorophenyltropane, magnetic resonance imaging, magnetic resonance spectroscopy, dopamine transporter