Abstract
There are numerous examples in the literature of gene therapy applications for recessive disorders. There are precious few instances, however, of studies conducted to treat dominantly inherited pathologies. The reasons are simple: there are fewer cases of dominantly inherited diseases on one hand, but mostly it is far easier to correct recessive mutations than dominant ones. Typically recessive mutations cause a loss of (or reduced) gene function which can be compensated for by introduction of a replacement allele into the cell. In contrast, dominant negative mutations not only display impaired function, but also exhibit a novel one that is pathologic to the cell. Treating these conditions by gene therapy implies silencing the dominant allele without altering the expression of the wild-type gene. We describe here different strategies aimed at silencing dominant mutations through mRNA destruction and provide examples of their application to known autosomal dominant diseases. An overview of the most common molecular tools (antisense DNA and RNA, ribozymes and RNA interference) suitable to utilize these strategies is also presented and we discuss the relevant aspects involved in the choice of a particular approach in a gene therapy experiment.
Keywords: RNA interference, catalytic RNA, antisense oligonucleotide, antisense RNA, gene silencing, messenger RNA, gene targeting, RNA stability
Current Gene Therapy
Title: RNA Based Gene Therapy for Dominantly Inherited Diseases
Volume: 6 Issue: 1
Author(s): Richard Pelletier, Solenne O.P. Caron and Jack Puymirat
Affiliation:
Keywords: RNA interference, catalytic RNA, antisense oligonucleotide, antisense RNA, gene silencing, messenger RNA, gene targeting, RNA stability
Abstract: There are numerous examples in the literature of gene therapy applications for recessive disorders. There are precious few instances, however, of studies conducted to treat dominantly inherited pathologies. The reasons are simple: there are fewer cases of dominantly inherited diseases on one hand, but mostly it is far easier to correct recessive mutations than dominant ones. Typically recessive mutations cause a loss of (or reduced) gene function which can be compensated for by introduction of a replacement allele into the cell. In contrast, dominant negative mutations not only display impaired function, but also exhibit a novel one that is pathologic to the cell. Treating these conditions by gene therapy implies silencing the dominant allele without altering the expression of the wild-type gene. We describe here different strategies aimed at silencing dominant mutations through mRNA destruction and provide examples of their application to known autosomal dominant diseases. An overview of the most common molecular tools (antisense DNA and RNA, ribozymes and RNA interference) suitable to utilize these strategies is also presented and we discuss the relevant aspects involved in the choice of a particular approach in a gene therapy experiment.
Export Options
About this article
Cite this article as:
Pelletier Richard, Caron O.P. Solenne and Puymirat Jack, RNA Based Gene Therapy for Dominantly Inherited Diseases, Current Gene Therapy 2006; 6 (1) . https://dx.doi.org/10.2174/156652306775515592
DOI https://dx.doi.org/10.2174/156652306775515592 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers (BMS-CGT-2024-HT-45)
Programmed Cell Death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements