Abstract
Delivery of tumor-associated antigens (TAA) in a way that induces effective, specific immunity is a challenge in anti-cancer vaccine design. Circumventing tumor-induced tolerogenic mechanisms in vivo is also critical for effective immunotherapy. Effective immune responses are induced by professional antigen presenting cells, in particular dendritic cells (DC). This requires presentation of the antigen to both CD4+ and CD8+ T cells in the context of strong costimulatory signals. Lentiviral vectors have been tested as vehicles for both ex vivo and in vivo delivery of TAA and/or activation signals to DC, and have been demonstrated to induce potent T cell mediated immune responses that can control tumor growth. This review will focus on the use of lentiviral vectors for in vivo gene delivery to DC, introducing strategies to target DC, either restricting cell entry or gene expression to improve safety of the lentiviral vaccine or targeting dendritic cell activation pathways to enhance performance of the lentiviral vaccine. This highlights the potential of lentiviral vectors as a generally applicable ‘off-the-shelf’ anti-cancer immunotherapeutic.
Keywords: Dendritic cell, entiviral vector, cancer, immunotherapy