Abstract
Laccases (p-diphenol oxidase, EC 1.10.3.2) are blue multicopper oxidases that catalyze the reduction of dioxygen to water, with a concomitant oxidation of small organic substrates. Since the description at the end of the nineteenth century of a factor catalyzing the rapid hardening of the latex of the Japanese lacquer trees (Rhus sp.) exposed to air laccases from different origins (plants, fungi bacteria) have been continuously discovered and extensively studied. Nowadays, molecular evolution and other powerful protein modification techniques offer possibilities to develop tailored laccases for a wide array of applications including drug synthesis, biosensors or biofuel cells. Here, we give an overview on strategies and results of our laboratory in the design of new biocatalysts based on laccases.
Keywords: Biocatalysts, fungal laccases, heterologous expression, mutagenesis, multicopper enzyme, biosensors, molecular evolution, Coprinopsis cinerea, Trametes sp, thermostability
Current Genomics
Title: Engineering Laccases: In Search for Novel Catalysts
Volume: 12 Issue: 2
Author(s): Viviane Robert, Yasmina Mekmouche, Pierre R. Pailley and Thierry Tron
Affiliation:
Keywords: Biocatalysts, fungal laccases, heterologous expression, mutagenesis, multicopper enzyme, biosensors, molecular evolution, Coprinopsis cinerea, Trametes sp, thermostability
Abstract: Laccases (p-diphenol oxidase, EC 1.10.3.2) are blue multicopper oxidases that catalyze the reduction of dioxygen to water, with a concomitant oxidation of small organic substrates. Since the description at the end of the nineteenth century of a factor catalyzing the rapid hardening of the latex of the Japanese lacquer trees (Rhus sp.) exposed to air laccases from different origins (plants, fungi bacteria) have been continuously discovered and extensively studied. Nowadays, molecular evolution and other powerful protein modification techniques offer possibilities to develop tailored laccases for a wide array of applications including drug synthesis, biosensors or biofuel cells. Here, we give an overview on strategies and results of our laboratory in the design of new biocatalysts based on laccases.
Export Options
About this article
Cite this article as:
Robert Viviane, Mekmouche Yasmina, R. Pailley Pierre and Tron Thierry, Engineering Laccases: In Search for Novel Catalysts, Current Genomics 2011; 12 (2) . https://dx.doi.org/10.2174/138920211795564340
DOI https://dx.doi.org/10.2174/138920211795564340 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements